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TÓM TẮT

Lắng đọng lớp nguyên tử (ALD) là công nghệ chế tạo vật liệu tiên tiến được ứng dụng rộng rãi trong nhiều 
lĩnh vực khác nhau. Nhờ vào tính chất tự bão hòa của các phản ứng trên bề mặt đế, ALD cho phép lắng đọng 
vật liệu với độ đồng đều cao trên mọi bề mặt và khả năng điều khiển chính xác kích thước của vật liệu ở mức độ 
nguyên tử. Do đó, ALD thường được dùng để lắng đọng các màng siêu mỏng hoặc các hạt nano trên bề mặt của 
các cấu trúc nano dị thể ứng dụng trong cảm biến khí nhằm làm tăng cường các tính chất điện và tính chất nhạy 
khí của vật liệu. Đặc biệt, trong thời gian gần đây, một số nghiên cứu cho thấy các vật liệu nhạy khí có độ nhạy 
và độ lặp lại chưa từng có có thể đạt được bằng cách kết hợp các quy trình ALD của các vật liệu khác nhau. Điều 
này cho thấy tiềm năng lớn của công nghệ ALD trong lĩnh vực cảm biến khí. Trong bài báo tổng quan này, chúng 
tôi trình bày tóm tắt những ứng dụng gần đây của ALD trong lĩnh vực cảm biến khí. Trong đó, chúng tôi tập trung 
vào hai ứng dụng chính của công nghệ ALD là biến tính bề mặt của các cấu trúc nano dị thể và chế tạo các vật liệu 
cảm biến tiên tiến.

Từ khóa: Lắng đọng lớp nguyên tử, cảm biến khí, vật liệu màng mỏng, vật liệu hạt nano, vật liệu đơn nguyên tử.

TRƯỜNG ĐẠI HỌC QUY NHƠN
KHOA HỌCTẠP CHÍ
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ABSTRACT

Atomic layer deposition (ALD) has been widely used in the field of gas sensors thanks to the advantages 
of a non-line-of-sight technique that allows for conformal and uniform coating on virtually any type of substrates, 
and the capability of depositing various materials in a highly controlled manner. ALD is mainly applied for surface 
modification using ultrathin films or nanoparticles to fabricate heterostructures, which can drastically change the 
electronic transport properties and improve the performance of the sensing materials. Recently, ALD has been 
utilized to fabricate “all-ALD sensing materials”, which exhibit unprecedented performance and outstanding 
reproducibility. This overall review summarizes recent advances in the fabrication of sensing materials for gas 
sensors by ALD, with focuses on two main applications: ALD for surface modification of sensing materials and 
ALD for fabrication of sensing materials.

Keywords: Atomic layer deposition, gas sensors, ultrathin films, nanoparticles, single atoms.
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1. INTRODUCTION

Gas sensors have been popularly used to monitor 
air pollution. Nowadays, they also appear in most 
of high buildings, smart homes, and industrial 
manufacturing processes to detect gas leakage 
that helps prevent accidents and avoid equipment 
malfunction. In some emerging areas such as 
healthcare, gas sensors are used in exhaled breath 
diagnosis or to provide a correct gas mixture for 
the sake of safety and health of patients. Hence, 
it is no doubt that gas sensors have become an 
indispensable part of our daily life.1–3

Gas sensors can be classified into various 
types based on their sensing materials, such as 
semiconductor metal oxide (SMO) sensors, 
polymer sensors, carbon nanotube sensors, 

or based on their sensing principle, such as 
resistive sensors, electrochemical sensors, 
thermal conductivity sensors, acoustic sensors, 
and optical sensors.4,5 Among these types, gas 
sensors using SMOs as sensing materials are most 
popularly used due to their high stability, low 
cost, and especially their chemiresistant behavior 
that represents a change in electrical resistance in 
response to the change in surrounding chemical 
environment.4 Among the SMOs, SnO2, ZnO, 
TiO2, and NiO are most used. During the past 
decades, various nanostructures of SMOs have 
been developed, including nanowires, nanorods, 
nanotubes or 3D architectures (Figure 1), which 
exhibit superior performance as the sensing 
materials in chemiresistive sensors to achieve 
high sensitivity and selectivity.
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The advantages of using nanostructured 
SMOs as sensing materials rely firstly on 
their facile synthesis techniques. Most of 
nanostructures can be achieved by wet-chemistry 
methods, such as solvothermal and hydrothermal. 
Chemical vapor deposition is often used to grow 
high-quality materials (e.g., better crystallinity, 
lower impurity) due to the higher growth 
temperatures and the absence of solvent usage. 
Secondly, nanostructured SMOs allow for tuning 
the material properties by tailoring their shape 
and size, which can be obtained by adjusting 
the synthesis conditions, such as temperature, 
reaction time, precursor concentration or even 
pH of the solution. Thirdly, SMO nanostructures 
provide high specific surface area (SSA) for the 
adsorption of gaseous species, which is directly 
proportional to the sensitivity of the sensors. 
The high SSA of SMO nanostructures also 
allows for a higher loading of functionalized 
materials on their surface, with is currently a key 
technique for improving sensor performance. 
Hence, nanostructured SMOs have been the 
most attractive materials for gas sensors. 
Nevertheless, nanostructured SMOs synthesized 

by wet-chemistry processes are commonly in 
form of powders, which are usually transferred 
onto pre-patterned electrodes by using methods 
like screen-printing, dip-coating, and drop-
coating to realize a sensor device, which is 
analogous to the process described in Figure 
2A. This well-established fabrication process 
is quite effective and low-cost; however, it 
suffers from the lack of control in terms of 
uniformity and reproducibility of the sensing 
layer. On-chip fabrication of sensing materials, 
in which the sensing materials are selectively 
grown on top of the pre-patterned electrodes 
(Figure 2B), has been developed to replace the 
dip-/drop-coating methods, which significantly 
improves the electrical contacts between the 
sensing materials and the metal electrodes. 
However, it does not improve much uniformity 
and reproducibility of the fabrication process. 
High-precision sensing layer technology is of 
great significance for the reliable production of 
sensors and sensor arrays. In this regard, atomic 
layer deposition (ALD) has emerged as an ideal 
technology for depositing sensing materials.

Figure 1. Several typical nanostructured SMOs used as sensing materials for gas sensors: (a) SnO2 NWs,6 (b) 
TiO2 nanotubes,7 (c) In2O3 nanospheres,8 (d) WO3 nanowires,9 (e) ZnO 3D hierarchical structure,10 and (f) SnO2 
3D nanoflowers.11
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2. ATOMIC LAYER DEPOSITION

Atomic layer deposition (ALD) is a gas-phase 
deposition technique, which is a variant of 
chemical vapor deposition (CVD).14 However, 
ALD can be carried out significantly lower 
temperatures, which are typically below 400 °C. 
In CVD, precursors are supplied continuously 
and co-exist in space and time above the 
substrate; however, in ALD, precursors are 
introduced in pulses sequentially and separately, 
and they are repeated in cycles.15 A typical ALD 
cycle consists of 4 sequential pulses: (1) a pulse 
of the first precursor (i.e., precursor exposure), 
(2) a pulse of inert gas to evacuate the reaction 
by-products and unused precursor (i.e., purge), 
(3) a pulse of the second precursor or co-reactant, 
and (4) a pulse of inert gas to evacuate the 
reaction by-products and unused precursor. An 
animation representing a cycle of Al2O3 ALD 
using trimethylaluminum (TMA – precursor A) 
and H2O (precursor B) is given in Figure 3. It 
is important to note that in ALD, the functional 
groups on the initial substrate surface are very 
important, which initiate the chemical reactions 
(i.e., chemisorption) with the gas molecules of 

precursor A when they are introduced to the 
reactor. These functional groups are commonly 
created by surface pre-treatment prior to 
the deposition. When TMA molecules are 
introduced into the reactor (step 1), they react 
with the functional groups (i.e., −OH) via the 
ligand-exchange reactions:14

−OH(surface) + Al(CH3)3(vapor)  
−O−Al(CH3)2(surface) + CH4(gas)        (1)

After all the −OH groups are consumed, 
the reactions reach a saturation (self-limiting), 
resulting in at most 1 monolayer containing 
Al atoms on the surface. The exceeding (i.e., 
unused) molecules and the by-products (i.e., CH4 
gas) are then evacuated by a purge of inert gas 
(step 2). In the next step, when H2O is introduced 
into the reactor, the reactions between H2O 
molecules and the newly formed ligands on the 
surface proceed as:

−O−Al(CH3)2(surface) + HOH(vapor)  
−O−Al(OH)2(surface) + CH4(gas)                    (2)

Similarly, when all the ligands have 
reacted with H2O, the reactions stop, forming 
at most 1 monolayer containing O atoms, and 

Figure 2. (A) Typical steps in a fabrication process of gas sensors employing sensing materials synthesized by 
hydrothermal method:12 (a) mixing precursors and stirring, (b) hydrothermal treatment, (c) collecting and washing 
the solid product, (d) drop-coating of sensing materials onto pre-patterned electrodes, and (e) thermal annealing; 
(B) On-chip growth of ZnO nanowires:13 (a) a schematic drawing describing the selective growth of ZnO, (b)-(d) 
SEM images of the ZnO nanowires taken in the area between the two Pt electrodes ((b) – cross sectional view and 
(d) – top view).
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the surface is now terminated by −OH groups, 
which are necessary for the reactions with TMA 
molecules in the next cycles. Reaction (1) and 
reaction (2) are commonly known as the two 
“half-reactions” in an ALD cycle. Typically, 
the growth rate in ALD is in the range of a few 
angstroms per cycle. Hence, by controlling the 
number of cycles, the film thickness and the 
amount of deposited material can be controlled 
at the atomic level. This is a unique property of 
ALD, which allows for uniform and conformal 
coating on various types of substrates with 
different geometries, such as flat substrates, 
high aspect ratio structures, 2D materials, 
porous structures, nanoparticles, and nanowires 
(Figure 4). 

Thanks to the advantages of a solvent-free 
method with excellent controllability, ALD has 
been applied in many fields, including electronic 
and photovoltaic devices,21,22 catalysis,23 and 
energy storage and conversion materials.24–26 
Recently, ALD has been also applied in the field 
of gas sensors, which is used to deposit ultrathin 
films of SMOs such as SnO2, ZnO and TiO2, as 
well as nanoclusters of noble metals such as Pt, 
Pd, and Ni, as presented concisely in a recent 
review by Marichy and Pinna.27 The applications 

of ALD in gas sensors can be divided into two 
groups: ALD for surface modification of sensing 
materials and ALD for fabrication of sensing 
materials.

2.1. ALD for surface modification of sensing 
materials

Surface modification is a common technique 
to tailor the properties of materials by coupling 
them with other materials. Particularly in 
gas sensors, to improve the selectivity and 
sensitivity of the sensing layers, they are usually 
coated with ultrathin films of SMOs or with 
nanoparticles of noble metals the create various 
types of heterostructures, such as n−n and 
p−n heterojunctions.28 The most investigated 
heterostructure in gas sensors is the core/shell 
structure. Due to their different electronic band 
structure, heterojunctions can drastically change 
the electronic transport of carriers and improve 
sensing properties compared to their single 
components. For example, SnO2 nanostructures 
are excellent sensing materials that have been 
used to detect various types of gases, both 
reducing and oxidizing gases.29 However, 
coating a thin layer of ZnO on SnO2 nanofibers 
to form an  n-ZnO/n-SnO2 heterojunction could 
significantly alter the sensing properties of SnO2: 

Figure 3. A typical ALD cycle consisting of 4 pulses: (1) precursor A, (2) inert gas, (3) precursor B, and (4) purge.
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the core-shell structure is highly effective in 
detecting gases only and weakens the sensitivity 
toward oxidizing gases.30 A p−n heterostructure 
based on p-CuO/n-ZnO core/shell nanofibers 
exhibited superior performance with a prominent 
enhancement of sensing ability compared to the 
bare ZnO nanofibers, allowing for detecting 
reducing gas CO at extremely low concentrations, 
i.e., down to 0.1 ppm.31 Many other core/shell 
structures of MSOs have been utilized in gas 
sensors, such as MoO3–TiO2,

32 CeO2–TiO2,
33 

In2O3–ZnO,34 Fe2O3–ZnO,35 Ga2O3–SnO2,
36 and 

Ga2O3–ZnO.37 In all cases, the thickness of the 
shell layer plays a pivotal role in the performance 
of sensing layer. Particularly, when the shell 
thickness is in the range of the Debye length of 
the shell material, the highest performance is 
achieved. For example, the n-ZnO/n-SnO2 core/
shell structure exhibited the highest sensitivity 
for the ZnO thickness of 20 nm (Figure 5A),30 
whereas an optimum shell layer of 16 nm was 
found for the p-CuO/n-ZnO core/shell structure 

(Figure 5B),31 both of which are in the Debye 
length range of the shell layers. These examples 
indicate that achieving heterostructured gas 
sensors with desired properties and optimum 
performance requires a precise thickness of the 
shell layer. Hence, ALD has been widely used 
to deposit various SMO thin films to realize 
different heterostructures for gas sensors, as 
presented in Table 1. 

The coupling of SMOs with nanoparticles 
of noble metals and transition metals such as  
Pt,38 Pd,39 Ru,40 Ag,41 and Co42 has been an 
effective method to improve the sensitivity, 
selectivity and response of gas sensors. The 
enhanced performance of the sensors due to the 
presence of the metal nanoparticles is attributed 
to two key factors: the catalytic activity of the 
metals (chemistry aspect) and the formation of 
Schottky contacts between the metal and the SMO 
(physics aspect).10 In the chemistry aspect, the 
high catalytic activity of the meal nanoparticles 

Figure 4. Examples of the uniformity of thin films and nanoclusters deposited by ALD: (a) AlN thin film on Si 
substrate with trenches,16 (b) TiN thin film on SiO2,

17 (c) SiO2 thin film on TiO2 nanoparticles,18 (d) Al2O3 thin film 
on Ag nanorods, (e) Pt nanoclusters on graphene,19 and (f) Cu2O nanoclusters on TiO2 nanoparticles.20
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promotes the adsorption of oxygen on the 
SMO surface, which enhances the extraction of 
electrons from the SMO to create ionic oxygen 
species. The enhanced extraction of electrons can 
cause a significant change in the SMO resistance, 
whereas the higher density of ionic oxygen 
species on the SMO surface provides more active 
sites for the interaction between the detected gas 
and the sensing layer. In the physics aspect, the 
presence of metal nanoparticles create Schottky 
junctions on the SMO surface in the vicinity of 
the nanoparticles.64 This narrows the conducting 
channel, resulting in the increase in resistance. 
Both the chemistry and the physics aspects can 
bring a significant improvement of sensitivity, 
selectivity, and response of sensors. For example, 
Rh nanoparticles on SnO2 nanofibers can act as 
effective adsorption sites to bind and dissociate 
oxygen molecules. This increases the adsorbed 
oxygen content, resulting in a thicker electron 
depletion layer and an increase resistance. 
Another example, the surface modification of 
ZnO hierarchical nanorods by Pt nanoparticles 
improved the selectivity of the sensor to 

methanol, increased its response approximately 
19500 times and significantly lowered the 
operating temperature compared to the pristine 
ZnO.10 In that case, the Pt nanoparticles not 
only enhanced the adsorption of O2, but also 
promoted the dissociation of methanol molecules 
and facilitated the electron transfer from Pt to 
ZnO, which consequently caused an abnormal 
decrease of resistance of sensing layer when 
exposed to methanol. These are a few examples 
among numerous research on the advantages 
of surface modification of sensing materials by 
metal nanoparticles that have been reported in 
the literature. With the advantages of a non-line-
of-sight technique that allows for conformal and 
uniform coating on all kinds of substrates, and 
the capability of depositing various pure metals 
in a highly controlled manner, ALD of metal 
nanoparticles has been recently applied for 
functionalize nanostructured metal oxides in gas 
sensors. Due to their high catalytic and sensing 
activities and well-developed ALD processes, Pt 
and Pd are most used. A few examples are given 
in Table 1.

Figure 5. (A) Influence of the shell thickness on the response of sensors based on n-ZnO/n-SnO2 core/shell 
structure;30 (B) for p-CuO/n-ZnO core/shell structure with the shell thickness being varied in the range of 0–200 
nm:31 (a) Dynamic response curves, (b) responses at various CO concentrations, and (c) responses at 0.1 ppm CO.
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Table 1. SMO thin films and noble metal nanoparticles grown by ALD for surface modification of nanostructured 
sensing materials.

Material 
(Shell)

Substrate (Core)
Shell thickness/ 
Cluster size (nm)

Junction 
type

Test gas Ref.

ZnO

Graphene 0.5 – 10 n–n HCHO, NO2
43

SnO2 nanofibers 22 – 250 n–n O2, NO2, CO 44

SnO2 nanorods 3.5 – 9.5 n–n CO, NO2; C7H8, C6H6
45

TiO2 nanorods 20 n–n C2H5OH 46

TiO2 nanofibers 50 – 250 n–n O2
47

WO3 nanorods 15 n–n NO2
48

In2O3 nanowires 10 – 53 n–n C2H5OH 49

CuO nanorods 9 n–p NO2
50

CuO nanowires 5 – 110 n–p C6H6
51

CuO nanofibers 5 – 200 n–p CO 31

SnO2

Carbon nanotubes 1.5 – 15 n–p NO2
52

CuO nanowires 0 – 31 n–p HCHO 53

TiO2 nanotubes 4 – 16 n–n NO2
54

Ga2O3 nanowires 2 – 15 n–n C2H5OH, NH3, CO, H2
36

WO3 nanosheets
Nb2O5 nanorods

5 – 30
7 – 34

n–n
n–n

NH3

H2S

55

56

TiO2

ZnO nanorods 10 n–n RH, NO2
57

Carbon nanotubes 1.5 – 15 n–p O2, NO2
58

NiO
SnO2 nanowires 2 – 82 p–n H2

59

Carbon nanotubes
Co3O4 nanoparticles

0.8 – 21.8 p–p
p–p

Acetone, C2H5OH
Trimethylamine

60

61

Cu2O SnO2 nanowires 5 – 80 p–n NO2
62

CuO SnO2 nanowires 5 – 80 p–n NO2, C7H8, C6H6
51

SiO2 SnO2 nanowires 1.8 – 10.5 H2
63

Pt

SnO2 nanowires 4 – 8 Schottky C2H5OH 64

Al2O3/ZnO nanorods 3 – 5 Schottky Acetylene 65

MoS2 nanoflakes < 1 – H2
66

Pd ZnO nanowires 10 Schottky
C6H6, C7H8, C2H5OH, 
CH3COCH3

67

Rh ZnO nanoflowers 0.4 – 1.6 Schottky Trimethylamine 68

2.2. ALD of sensing materials

In addition to the application in modifying the 
surface of SMO nanostructures, ALD has also 
been used to deposit thin films of SnO2,

69–71 
TiO2,

72,73 and ZnO74 as the sensing layers for gas 
sensors directly on top of substrates without the 
need of complex nanostructures. The studies on 
the sensing performance of these thin films also 

revealed the strong influence of film thickness 
on the sensitivity and response of the sensors. 
For example, Rosental et al.69 investigated the 
sensing properties of ALD SnO2 films toward CO 
gas and observed that the maximum performance 
was achieved for the layer with a thickness of  
10 nm. This thickness is comparable to the Debye 
length of SnO2. Du et al.70 found that the sensor 
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highly desirable for taking full advantages of 
ALD: Precise control, uniform, and reproducible. 
This has just been realized very recently by 
Zhang et al,75 who fabricated the sensors based 
on SnO2 ultrathin films and Pt single atoms, both 
deposited by ALD (Figure 6A), and investigated 
their sensing performance to triethylamine 
(TEA) gas. The work is distinctive from existing 
research in developing sensing materials for 
advanced gas sensors, both in both fundamental 
mechanistic and technological aspects. For the 
first time, Pt single atoms were used to improve 
the sensing properties of SnO2 ultrathin films with 
thicknesses in the range of a few nanometers, 
resulting in an exceptionally high sensitivity of 
8.76 ppm−1 and an extremely low detection limit 
of 7 ppb. The sensors also exhibited excellent 
selectivity, low operating temperature, very fast 
response and recovery (Figure 6B), which are 

response changed drastically by varying the SnO2 
thickness in a very narrow range, i.e., 1.6–5.9 
nm. The use of ALD not only provides precise 
control of the film thickness, but also tackles 
the uniformity and reproducibility issues that 
are commonly encountered in traditional sensor 
preparation techniques (i.e., drop-/dip-coating of 
sensing materials on prepatterned electrodes).

Up to date, ALD of shell layers, including 
SMO thin films and metal nanoparticles, for gas 
sensors has been widely utilized. However, this 
approach can only offer an improved performance 
of sensors, but it cannot solve the problems in the 
reproducible fabrication gas sensors due to it is 
still strongly dependent on the fabrication of the 
nanostructures (e.g., wet chemistry) and transfer 
them to the sensor electrodes (e.g., drop-/dip-
coating). An “all ALD” or “ALD only” process 
in which all materials are deposited by ALD is 

Figure 6. (A) Structural characterization of SnO2 and Pt/SnO2 thin films: (a & b) SEM images of a SnO2 thin film, 
and (c) HAADF-STEM image showing the presence of Pt single atoms. (B) Sensing performance of the Pt/SnO2 
toward TEA vapor: (a) responses to 10 ppm TEA of SnO2 and Pt/SnO2 thin films (9 nm) at different temperatures; 
(b) dynamic transients of SnO2 and Pt/SnO2 thin films to 10 ppm TEA at 200 °C, and dynamic transients of (c)  
Pt/SnO2 and (d) SnO2 thin films to TEA concentrations in the range of 0.1–100 ppm at 200 °C.75
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far beyond the results reported in the literature.75 
Most recently, an “all ALD” process has also 
been demonstrated by Zhuiykov et al. for the 
fabrication of heterostructures based on SnO2 
and In2O3 ultrathin films with a total thickness 
of below 10 nm at wafer scale.76 Without the 
use of functionalized metal nanoparticles, the 
sensors based using SnO2/In2O3 heterostructures 
also exhibited excellent sensitivity, high rate 
of gas detection, good selectivity and long-
term stability. The sensitivity of S = 53 and 
limit of detection of ~1.0 ppm towards ethanol 
achieved by the ALD fabricated SnO2/In2O3 
heterostructures are the highest performance of 
the reported sensors based on SnO2 and In2O3 
composites prepared by various methods.76 
Hence, the excellent performance of the sensing 
materials prepared by an “all ALD” process in 
combination with the great advantages of ALD 
(precise control, high reproducibility, high 
uniformity and well-established large scale 
production) can pave the way for the scalable 
production of reliable and high performance thin 
film sensors. 

3. CONCLUSIONS AND OUTLOOK

The versatility and precision offered by this ALD 
make it an ideal choice when developing novel 
sensing layers, as well as engineering complex 
nanostructures that further improve performance 
levels while providing additional perspectives 
into development processes related to these types 
of technologies. Hence, ALD has been widely 
applied in the fabrication of resistive gas sensor 
devices, where at least one step involves using 
this method. On the one hand, an effective surface 
modification method, ALD has been employed 
to deposit ultrathin films and nanoparticles 
of a wide range of materials on virtually any 
sophisticated nanostructures. This provides 
a feasible route to realize heterojunctions of 
sensing materials, which can drastically change 
the electronic transport properties and improve 
the sensing performance. On the other hand, 
ALD can be used to realize all-ALD-fabricated 
nanostructures. This approach not only allows 
for the fabrication of novel nanostructures 

with unprecedented sensing performance in the 
sensitivity, selectivity, and stability, but also 
assures the high reproducibility and reliability 
of the sensors, which are highly important 
for practical applications. Furthermore, its 
compatibility with integrated circuits makes 
it a cost-effective solution compared to other 
fabrication methods which can lead towards 
more widespread adoption in various industries 
such as automotive or medical applications 
where reliable detection systems are essential.

REFERENCES

1. X. Zhou, Z. Xue, X. Chen, C. Huang, W. Bai, 
Z. Lu, T. Wang. Nanomaterial-based gas sensors 
used for breath diagnosis, Journal of Materials 
Chemistry B, 2020, 8(16), 3231–3248.

2. G. F. Fine, L. M. Cavanagh, A. Afonja, R. 
Binions. Metal oxide semi-conductor gas 
sensors in environmental monitoring, Sensors, 
2010, 10(6), 5469–5502.

3. X. Chen, M. Leishman, D. Bagnall, N. Nasiri. 
Nanostructured gas sensors: From air quality 
and environmental monitoring to healthcare 
and medical applications, Nanomaterials, 2021, 
11(8), 1927.

4. A. Dey. Semiconductor metal oxide gas sensors: 
A review, Materials Science and Engineering B, 
2018, 229, 206–217.

5. J. B. A. Gomes, J. J. P. C. Rodrigues, R. A. L. 
Rabêlo, N. Kumar, S. Kozlov. Io T-enabled 
gas sensors: Technologies, applications, and 
opportunities, Journal of Sensor and Actuator 
Networks, 2019, 8(4), 57.

6. Y.-J. Choi, I.-S. Hwang, J.-G. Park, K. J. Choi, 
J.-H. Park, J.-H. Lee. Novel fabrication of an 
SnO2 nanowire gas sensor with high sensitivity, 
Nanotechnology, 2008, 19(9), 095508.

7. S. Lin, D. Li, J. Wu, X. Li, S. A. Akbar. A 
selective room temperature formaldehyde gas 
sensor using TiO2 nanotube arrays, Sensors and 
Actuators B: Chemical, 2011, 156(2), 505–509.

8. X. Liu, L. Jiang, X. Jiang, X. Tian, X. Sun, Y. 
Wang, W. He, P. Hou, X. Deng, X. Xu. Synthesis 



Quy Nhon University Journal of Science, 2023, 17(5), 5-18 15
https://doi.org/10.52111/qnjs.2023.17501

QUY NHON UNIVERSITY
SCIENCEJOURNAL OF

of Ce-Doped In2O3 nanostructure for gas sensor 
applications, Applied Surface Science, 2018, 
428, 478–484.

9. N. M. Vuong, D. Kim, H. Kim. Surface Gas 
Sensing Kinetics of a WO3 Nanowire Sensor: 
Part 1-Oxidizing Gases, Sensors and Actuators 
B: Chemical, 2015, 220, 932–941.

10. N. M. Vuong, D. D. Duy, H. N. Hieu, V. N. 
Nguyen, N. N. K. Truong, H. V. Bui, N. V. Hieu. 
Low-Operating temperature and remarkably 
responsive methanol sensors using Pt-decorated 
hierarchical ZnO structure, Nanotechnology, 
2021, 33(6), 065502.

11. Y. Liu, J. Huang, J. Yang, S. Wang. Pt 
Nanoparticles functionalized 3D SnO2 
nanoflowers for gas sensor application, Solid-
State Electronics, 2017, 130, 20–27.

12. N. T. Thang, L. T. Hong, N. H. Thoan,  
C. M. Hung, N. V. Duy, N. V. Hieu, N. D. 
Hoa. Controlled synthesis of ultrathin MoS2 
nanoflowers for highly enhanced NO2 sensing at 
room temperature, RSC Advances, 2020, 10(22), 
12759–12771.

13. M.-W. Ahn, K.-S. Park, J.-H. Heo, D.-W. Kim,  
K. J. Choi, J.-G. Park. On-Chip fabrication 
of ZnO-Nanowire gas sensor with high gas 
sensitivity, Sensors and Actuators B: Chemical, 
2009, 138(1), 168–173.

14. S. M. George. Atomic Layer Deposition: An 
Overview, Chemical Reviews, 2010, 110(1), 
111–131.

15. H. V. Bui, F. Grillo, J. R. van. Ommen. Atomic 
and molecular layer deposition: Off the beaten 
track, Chemical Communications, 2017, 53(1), 
45–71.

16. H. V. Bui, F. B. Wiggers, A. Gupta, M. D. 
Nguyen, A. A. I. Aarnink, M. P. de Jong, A. Y. 
Kovalgin. Initial growth, refractive index, and 
crystallinity of thermal and plasma-enhanced 
atomic layer deposition AlN films, Journal of 
Vacuum Science & Technology A, 2015, 33(1), 
01A111.

17. H. V. Bui, A. W. Groenland, A. a. I. Aarnink, R. a. 
M. Wolters, J. Schmitz, A. Y. Kovalgin. Growth 
kinetics and oxidation mechanism of ALD TiN 

thin films monitored by in situ spectroscopic 
ellipsometry, Journal of the Electrochemical 
Society, 2011, 158(3), H214.

18. J. Guo, D. Benz, T.-T. D. Nguyen, P.-H. Nguyen, 
T.-L. T. Le, H.-H. Nguyen, D. L. Zara, B. Liang, 
H. T. Hintzen (Bert), J. R. V. Ommen, H. V. 
Bui. Tuning the photocatalytic activity of TiO2 
nanoparticles by ultrathin SiO2 films grown by 
low-temperature atmospheric pressure atomic 
layer deposition, Applied Surface Science, 2020, 
530, 147244.

19. H. V. Bui, F. Grillo, S. S. Kulkarni, R. Bevaart, 
N. V. Thang, B. van der Linden, J. A. Moulijn, M. 
Makkee, M. T. Kreutzer, J. R. V. Ommen. Low-
temperature atomic layer deposition delivers 
more active and stable Pt-Based catalysts, 
Nanoscale, 2017, 9(30), 10802–10810.

20. D. Benz, Y.-N. T. Nguyen, T.-L. T. Le, T.-H. T. Le, 
V.-T. Le, J. R. V.  Ommen, H. V. Bui. Controlled 
growth of ultrasmall Cu2O clusters on TiO2 
nanoparticles by atmospheric-pressure atomic 
layer deposition for enhanced photocatalytic 
activity, Nanotechnology, 2021, 32(42), 425601.

21. A. F. Palmstrom, P. K. Santra, S. F. Bent. Atomic 
layer deposition in nanostructured photovoltaics: 
Tuning optical, electronic and surface properties, 
Nanoscale, 2015, 7(29), 12266–12283.

22. R. W. Johnson, A. Hultqvist, S. F. Bent. A 
brief review of atomic layer deposition: From 
fundamentals to applications, Materials Today, 
2014, 17(5), 236–246.

23. B. J.  O’Neill, D. H. K. Jackson, J. Lee, C. Canlas, 
P. C. Stair, C. L. Marshall, J. W. Elam, T. F. 
Kuech, J. A. Dumesic, G. W. Huber. Catalyst 
design with atomic layer deposition, ACS 
Catalysis, 2015, 5(3), 1804–1825.

24. M. Mattinen, M. Leskelä, M. Ritala. Atomic 
layer deposition of 2D Metal dichalcogenides 
for electronics, catalysis, energy storage, and 
beyond, Advanced Materials Interfaces, 2021, 
8(6), 2001677.

25. B. Gupta, Md. A. Hossain, A. Riaz, A. Sharma, 
D. Zhang, H. H. Tan, C. Jagadish, K. Catchpole, 
B. Hoex, S. Karuturi. Recent advances in 
materials design using atomic layer deposition 



16 Quy Nhon University Journal of Science, 2023, 17(5), 5-18
https://doi.org/10.52111/qnjs.2023.17501

QUY NHON UNIVERSITY
SCIENCEJOURNAL OF

for energy applications, Advanced Functional 
Materials, 2022, 32(3), 2109105.

26. Y. Zhao, L. Zhang, J. Liu, K. Adair, F. Zhao, 
Y. Sun, T. Wu, X. Bi, K. Amine, J. Lu, X. Sun. 
Atomic/Molecular layer deposition for energy 
storage and conversion, Chemical Society 
Reviews, 2021, 50(6), 3889–3956.

27. C. Marichy, N. Pinna. Atomic layer deposition to 
materials for gas sensing applications, Advanced 
Materials Interfaces, 2016, 3(21), 1600335.

28. D. R. Miller, S. A. Akbar, P. A. Morris. 
Nanoscale metal Oxide-based heterojunctions 
for gas sensing: A review, Sensors and Actuators 
B: Chemical, 2014, 204, 250–272.

29. S. Das, V. Jayaraman. SnO2: A comprehensive 
review on structures and gas sensors, Progress 
in Materials Science, 2014, 66, 112–255.

30. A. Katoch, S.-W. Choi, G.-J. Sun, S. S. Kim. An 
approach to detecting a reducing gas by radial 
modulation of electron-depleted shells in core–
shell nanofibers, Journal of Materials Chemistry 
A, 2013, 1(43), 13588–13596.

31. A. Katoch, S.-W. Choi, G.-J. Sun, H. W. Kim, S. 
S. Kim. Mechanism and prominent enhancement 
of sensing ability to reducing gases in p/n core–
shell nanofiber, Nanotechnology, 2014, 25(17), 
175501.

32. Y.-J. Chen, G. Xiao, T.-S. Wang, F. Zhang, Y. 
Ma, P. Gao, C.-L. Zhu, E. Zhang, Z. Xu, Q. Li. 
α-MoO2/TiO3 Core/Shell Nanorods: Controlled-
synthesis and low-temperature gas sensing 
properties, Sensors and Actuators B: Chemical, 
2011, 155(1), 270–277.

33. Y.-J. Chen, G. Xiao, T.-S. Wang, F. Zhang, Y. 
Ma, P. Gao, C.-L. Zhu, E. Zhang, Z. Xu, Q. Li. 
Synthesis and enhanced gas sensing properties 
of crystalline CeO2/TiO2 Core/Shell nanorods, 
Sensors and Actuators B: Chemical, 2011, 
156(2), 867–874.

34. N. Singh, A. Ponzoni, R. K. Gupta, P. S. Lee, 
E. Comini. Synthesis of In2O2–ZnO core–shell 
nanowires and their application in gas sensing, 
Sensors and Actuators B: Chemical, 2011, 
160(1), 1346–1351.

35. J. Zhang, X. Liu, L. Wang, T. Yang, X. Guo, 
S. Wu, S. Wang, S. Zhang. Synthesis and Gas 
Sensing Properties of α-Fe2O3@ZnO Core–Shell 
Nanospindles, Nanotechnology, 2011, 22(18), 
185501.

36. Y.-G. Jang, W.-S. Kim, D.-H. Kim, S.-H. 
Hong. Fabrication of Ga2O3/SnO2 Core–Shell 
Nanowires and Their Ethanol Gas Sensing 
Properties, Journal of Materials Research, 2011, 
26(17), 2322–2327.

37. C. Jin, S. Park, H. Kim, C. Lee. Ultrasensitive 
multiple networked Ga2O3-Core/ZnO-Shell 
nanorod gas sensors, Sensors and Actuators B: 
Chemical, 2012, 161(1), 223–228.

38. Q. Zhou, L. Xu, A. Umar, W. Chen, R. Kumar, 
Pt nanoparticles decorated SnO2 nanoneedles for 
efficient CO gas sensing applications, Sensors 
and Actuators B: Chemical, 2018, 256, 656–664.

39. P. Cao, Z. Yang, S. T. Navale, S. Han, X. Liu, 
W. Liu, Y. Lu, F. J. Stadler, D. Zhu. Ethanol 
sensing behavior of Pd-Nanoparticles decorated 
ZnO-Nanorod based chemiresistive gas sensors. 
Sensors and Actuators B: Chemical, 2019, 298, 
126850.

40. X. Kou, F. Meng, K. Chen, T. Wang, P. Sun, 
F. Liu, X. Yan, Y. Sun, F.Liu, K. Shimanoe, G. 
Lu. High-Performance acetone gas sensor based 
on Ru-Doped SnO2 nanofibers, Sensors and 
Actuators B: Chemical, 2020, 320, 128292.

41. X. Cheng, Y. Xu, S. Gao, H. Zhao, L. Huo. 
Ag nanoparticles modified TiO2 spherical 
heterostructures with enhanced gas-sensing 
performance, Sensors and Actuators B: 
Chemical, 2011, 155(2), 716–721.

42. H. W. Kim, H. G. Na, Y. J. Kwon, H. Y. Cho, 
C. Lee. Decoration of Co nanoparticles on 
ZnO-branched SnO2 nanowires to enhance gas 
sensing, Sensors and Actuators B: Chemical, 
2015, 219, 22–29.

43. H. Mu, Z. Zhang, X. Zhao, F. Liu, K. Wang, 
H. Xie. High sensitive formaldehyde graphene 
gas sensor modified by atomic layer deposition 
zinc oxide films, Applied Physics Letters, 2014, 
105(3), 033107.



Quy Nhon University Journal of Science, 2023, 17(5), 5-18 17
https://doi.org/10.52111/qnjs.2023.17501

QUY NHON UNIVERSITY
SCIENCEJOURNAL OF

44. S.-W. Choi, J. Y. Park, S. S. Kim. Synthesis of 
SnO2–ZnO Core–Shell nanofibers via a novel 
two-step process and their gas sensing properties, 
Nanotechnology, 2009, 20(46), 465603.

45. S.-W. Choi, A. Katoch, G.-J. Sun, J.-H. Kim, 
S.-H. Kim, S. S. Kim. Dual functional sensing 
mechanism in SnO2–ZnO core–shell nanowires, 
ACS Applied Materials & Interfaces, 2014, 
6(11), 8281–8287.

46. S. Park, S. An, H. Ko, S. Lee, H. W. Kim, C. 
Lee, Enhanced ethanol sensing properties of 
TiO2/ZnO Core–Shell nanorod sensors, Applied 
Physics A, 2014, 115(4), 1223–1229.

47. J. Y. Park, S.-W. Choi, J.-W. Lee, C. Lee, S. S. 
Kim. Synthesis and gas sensing properties of 
TiO2–ZnO core-shell nanofibers, Journal of the 
American Ceramic Society, 2009, 92(11), 2551–
2554.

48. S. An, S. Park, H. Ko, C. Lee. Enhanced NO2 

gas sensing properties of WO3 nanorods 
encapsulated with ZnO, Applied Physics A, 
2012, 108(1), 53–58.

49. S. Park, H. Ko, S. Kim, C. Lee. Role of 
the interfaces in multiple networked one-
dimensional core–shell nanostructured gas 
sensors, ACS Applied Materials & Interfaces, 
2014, 6(12), 9595–9600.

50. C. Jin, H. Kim, S. Park, S.-W. Choi, S. S. Kim, 
C. Lee. NO2 gas sensing properties of ZnO 
sheathed CuO nanorods, Surface and Interface 
Analysis, 2012, 44(11–12), 1534–1537.

51. J.-H. Kim, A. Katoch, S. S. Kim. Optimum shell 
thickness and underlying sensing mechanism in 
p–n CuO–ZnO core–shell nanowires, Sensors 
and Actuators B: Chemical, 2016, 222, 249–256.

52. C. Marichy, N. Donato, M.-G. Willinger, M. 
Latino, D. Karpinsky, S.-H. Yu, G. Neri, N. 
Pinna. Tin dioxide sensing layer grown on 
tubular nanostructures by a non-aqueous atomic 
layer deposition process, Advanced Functional 
Materials, 2011, 21(4), 658–666.

53. L.-Y. Zhu, K. Yuan, J.-G. Yang, H.-P. Ma, T. 
Wang, X.-M. Ji, J.-J. Feng, A. Devi, H.-L. Lu. 
Fabrication of heterostructured P-CuO/n-SnO2 
core-shell nanowires for enhanced sensitive and 

selective formaldehyde detection, Sensors and 
Actuators B: Chemical, 2019, 290, 233–241.

54. S. Ng, J. Prášek, R. Zazpe, Z. Pytlíček, Z. 
Spotz, J. R. Pereira, J. Michalička, J. Přikryl, 
M. Krbal, H. Sopha, J. Hubálek, J. M. Macák. 
Atomic layer deposition of SnO2 - Coated 
anodic one-dimensional TiO2 nanotube layers 
for low concentration NO2 sensing, ACS Applied 
Materials & Interfaces, 2020, 12(29), 33386–
33396.

55. K.-P. Yuan, L.-Y. Zhu, J.-H. Yang, C.-Z. Hang, 
J.-J. Tao, H.-P. Ma, A.-Q. Jiang, D. W. Zhang, H.-
L. Lu. Precise preparation of WO3@SnO2 core 
shell nanosheets for efficient NH3 gas sensing, 
Journal of Colloid and Interface Science, 2020, 
568, 81–88.

56. L.-W. Mao, L.-Y. Zhu, T. T. Wu, L. Xu, X.-H. 
Jin, H.-L. Lu. Excellent long-term stable H2S 
gas sensor based on Nb2O5/SnO2 core-shell 
heterostructure nanorods, Applied Surface 
Science, 2022, 602, 154339.

57. Y.-C. Liang, W.-K. Liao, S.-L. Liu. Performance 
enhancement of humidity sensors made 
from oxide heterostructure nanorods via 
microstructural modifications, RSC Advances, 
2014, 4(92), 50866–50872.

58. C. Marichy, N. Donato, M. Latino, M. G. 
Willinger, J.-P. Tessonnier, G. Neri, N. Pinna. Gas 
sensing properties and P-Type response of ALD 
TiO2 coated carbon nanotubes, Nanotechnology, 
2015, 26(2), 024004.

59. M. H. Raza, N. Kaur, E. Comini, N. Pinna. 
Toward optimized radial modulation of the 
space-charge region in one-dimensional SnO2–
NiO core–shell nanowires for hydrogen sensing, 
ACS Applied Materials & Interfaces, 2020, 
12(4), 4594–4606.

60. M. H. Raza, K. Movlaee, S. G. Leonardi, 
N. Barsan, G. Neri, N. Pinna. Gas sensing 
of NiO-SCCNT core–shell heterostructures: 
optimization by radial modulation of the hole-
accumulation layer, Advanced Functional 
Materials, 2020, 30(6), 1906874.

61. C. Lou, H. Pan, H. Mei, G. Lu, X. Liu, J. 
Zhang. Low coordination states in Co3O4/NiOx 



18 Quy Nhon University Journal of Science, 2023, 17(5), 5-18
https://doi.org/10.52111/qnjs.2023.17501

QUY NHON UNIVERSITY
SCIENCEJOURNAL OF

heterostructures by atomic layer deposition for 
enhanced gas detection, Chemical Engineering 
Journal, 2022, 448, 137641.

62. J.-H. Kim, A. Katoch, S.-H. Kim, S. S. Kim. 
Chemiresistive sensing behavior of SnO2 (n)–
Cu2O (p) core–shell nanowires, ACS Applied 
Materials & Interfaces, 2015, 7(28), 15351–
15358.

63. M. H. Raza, N. Kaur, E. Comini, N. Pinna.  
SnO2/SiO2 1D core/shell nanowires heterostructures 
for selective hydrogen sensing, Advanced 
Materials Interfaces, 2021, 8(17), 2100939.

64. Y.-H. Lin, Y.-C. Hsueh, P.-S. Lee, C.-C. Wang, J. 
M. Wu, T.-P. Perng, H. C. Shih. Fabrication of tin 
dioxide nanowires with ultrahigh gas sensitivity 
by atomic layer deposition of platinum, Journal 
of Materials Chemistry, 2011, 21(28), 10552–
10558.

65. V. V. Kondalkar, L. T. Duy, H. Seo, K. Lee. 
Nanohybrids of Pt-functionalized Al2O3/ZnO 
core–shell nanorods for high-performance 
MEMS-Based acetylene gas sensor, ACS 
Applied Materials & Interfaces, 2019, 11(29), 
25891–25900.

66. S. Lee, Y. Kang, J. Lee, J. Kim, J. W. Shin, S. Sim, 
D. Go, E. Jo, S. Kye, J. Kim, J. An. Atomic layer 
deposited Pt nanoparticles on functionalized 
MoS2 as highly sensitive H2 sensor, Applied 
Surface Science, 2022, 571, 151256.

67. M. Weber, J.-Y. Kim, J.-H. Lee, J.-H. Kim, I. 
Iatsunskyi, E. Coy, P. Miele, M. Bechelany, S. 
S. Kim. Highly efficient hydrogen sensors based 
on Pd nanoparticles supported on boron nitride 
coated ZnO nanowires, Journal of Materials 
Chemistry A, 2019, 7(14), 8107–8116.

68. Z.  Li, C. Lou, G. Lei, G. Lu, H. Pan, X. Liu, 
J. Zhang, Atomic layer deposition of Rh/ZnO 
nanostructures for anti-humidity detection 
of trimethylamine, Sensors and Actuators B: 
Chemical, 2022, 355, 131347.

69. A. Rosental, A. Tarre, A. Gerst, J. Sundqvist, 
A. Hårsta, A. Aidla, J. Aarik, V. Sammelselg, 

T.  Uustare. Gas sensing properties of epitaxial 
SnO2 Thin films prepared by atomic layer 
deposition, Sensors and Actuators B: Chemical, 
2003, 93(1–3), 552–555.

70. X. Du, S. M. George. Thickness dependence of 
sensor response for co gas sensing by tin oxide 
films grown using atomic layer deposition, 
Sensors and Actuators B: Chemical, 2008, 
135(1), 152–160.

71. A. J. Niskanen, A. Varpula, M. Utriainen, 
G. Natarajan, D. C. Cameron, S. Novikov,  
V. M. Airaksinen, J. Sinkkonen, S. Franssila. 
Atomic layer deposition of tin dioxide sensing 
film in microhotplate gas sensors, Sensors and 
Actuators B: Chemical, 2010, 148(1), 227–232.

72. S. Boyadjiev, V. Georgieva, L. Vergov, Z. Baji, 
F. Gáber, I. M. Szilágyi. Gas sensing properties 
of very thin TiO2 films prepared by atomic 
layer deposition (ALD), Journal of Physics: 
Conference Series, 2014, 559, 012013.

73. O. Lupan, V. Postica, N. Ababii, T. Reimer, 
S. Shree, M. Hoppe, O. Polonskyi, V. Sontea, 
S. Chemnitz, F. Faupel, R. Adelung. Ultra-
Thin TiO2 films by atomic layer deposition 
and surface functionalization with au nanodots 
for sensing applications, Materials Science in 
Semiconductor Processing, 2018, 87, 44–53.

74. S. I. Boyadjiev, V. Georgieva, R. Yordanov, 
Z. Raicheva, I. M. Szilágyi. Preparation and 
characterization of ALD deposited ZnO Thin 
films studied for gas sensors, Applied Surface 
Science, 2016, 387, 1230–1235.

75. Y. Xu, W. Zheng, X. Liu, L. Zhang, L. Zheng, 
C. Yang, N. Pinna, J. Zhang. Platinum single 
atoms on tin oxide ultrathin films for extremely 
sensitive gas detection, Materials Horizons, 
2020, 7(6), 1519–1527.

76. H. Xu, M. K. Akbari, Z. Wei, J. Hu, F. Verpoort, 
S. Zhuiykov. Plasma-induced Sub-10 Nm 
Au-SnO2-In2O3 heterostructures fabricated by 
atomic layer deposition for highly sensitive 
ethanol detection on ppm level, Applied Surface 
Science, 2021, 563, 150400.



19
https://doi.org/10.52111/qnjs.2023.17502

Tạp chí Khoa học Trường Đại học Quy Nhơn, 2023, 17(5), 19-32

Máy phát điện ma sát nano: giải pháp tiềm năng  
cho năng lượng hiện đại

Phan Hải1,2,*, Nguyễn Hữu Đức3, Phạm Đức Thắng4

1Trường Đại học Công nghệ, Đại học Quốc gia Hà Nội, Việt Nam
2Phòng thí nghiệm trọng điểm công nghệ Micro/nano, Đại học Quốc gia Hà Nội, Việt Nam

3 Đại học Quốc gia Hà Nội, Việt Nam
 4Trường Đại học Phenikaa, Việt Nam

Ngày nhận bài: 07/03/2023; Ngày sửa bài: 26/08/2023; Ngày nhận đăng: 28/08/2023;
 Ngày xuất bản: 28/10/2023

TÓM TẮT

 Cuộc khủng hoảng năng lượng toàn cầu kéo theo sự quan tâm lâu dài tới sự đổi mới khoa học và công nghệ. 
Ở bình diện toàn cầu, các nhiên liệu hóa thạch truyền thống như than đá, dầu và khí đang dần bị kiệt quệ do sự công 
nghiệp hóa và đô thị hóa nhanh chóng. Vì những đặc tính này, việc tìm kiếm các nguồn năng lượng nhân tạo sạch 
và tái tạo luôn là một ưu tiên hàng đầu của các nhà khoa học để hướng đến sự phát triển bền vững của xã hội. Máy 
phát điện ma sát nano (TENG) đã được giới thiệu vào năm 2012 bởi nhóm nghiên cứu của Wang. Kể từ đó, một 
loạt các thiết kế máy phát điện nano đã chứng minh tiềm năng ứng dụng và những lợi thế độc đáo. TENG cũng đã 
chứng minh tiềm năng trong việc chuyển đổi năng lượng cơ học thành năng lượng điện bằng cách thu thập nhiều 
dạng năng lượng cơ học xung quanh. Hoạt động của TENG phụ thuộc vào hiệu ứng ma sát điện, gây ra tĩnh điện 
giữa hai bề mặt vật liệu khi tiếp xúc. Do đó, TENG được coi là một loại "máy phát điện nano" do sự phụ thuộc vào 
ma sát điện nano và dòng dịch chuyển do tĩnh điện gây ra trong quá trình hoạt động. Trong bài báo này, lý thuyết 
cơ bản, các thí nghiệm và ứng dụng của TENG được nêu rõ như một nền tảng cho năng lượng của thời đại mới.

Từ khóa: Máy phát điện, ma sát điện, chuyển đổi năng lượng.

*Tác giả liên hệ chính. 
Email: phanhaik53v@gmail.com
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ABSTRACT

The global energy crisis is accompanied by the long-term interest of scientific and technological innovation. 
At the macro level, traditional fossil fuels such as coal, oil and gas are gradually being exhausted due to rapid 
industrialization and urbanization. Because of these characteristics, the search for clean and renewable sources of 
artificial energy is always a top priority of scientists to aim at sustainable development of the society. Since the 
introduction of triboelectric nanogenerators (TENG) by Z. L. Wang group in 2012, a wide range of nanogenerator 
designs have proven application potentials and unique advantages. TENG have also demonstrated potentials 
in mechanical energy to electrical energy conversion by capturing many forms of ambient mechanical energy. 
The operation of TENG depends on the effect of electric friction, which induces static electricity between two 
material surfaces when being in contact. Therefore, TENG are considered as a kind of "nanogenerators" due to 
their dependence on electrostatically induced nano-electrical friction and displacement currents during operation. 
In this paper, the fundamental theory, experiments, and applications of TENG are reviewed as a foundation of the 
energy for the new era.

Keywords: Generator, triboelectric, energy conversion.
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1. INTRODUCTION

Mechanical energy is the most common source 
of energy existing around us. It can be in the 
form of human movement, breathing, heartbeat 
or vehicle movement, the shaking of things such 
as leaves or waves. In essence, these mechanical 
energies are the result of the conversion of 
energy from one form to another. For example, 
the energy that exists internally in fuels such 
as gasoline is converted into the mechanical 
energy that drives the vehicle when it is burned 

in the fuel chamber. The motion of the car just 
mentioned is one of the examples showing that 
mechanical energies around us can be generated 
from simple small parts of life with specific 
purposes. In the process of producing these 
energies, there are many techniques that can be 
developed to capture and use them for necessary 
human activities or convert them directly into 
electricity.

Electromagnetic induction is the 
scientific basis for most electric generators. The 
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operating principle of the generator is based on 
the phenomenon of electromagnetic induction 
namely Faraday's law. That law states that when 
the magnetic flux through a coil and changes 
due to the external mechanical forces, an 
induced current will be introduced inside. This 
principle is widely used in devices that capture 
energy from the surrounding environment. The 
traditional electromagnetic generator structure 
consists of the following parts:

The generator has the function of 
generating electromagnetic energy from the raw 
material supplied to the machine. The generator 
is composed of two main parts, the inductor 
(roto) and the armature (stator). These two small 
parts work in harmony with each other to create 
motion between electromagnetic and electrical.

- Stator - armature: consists of coils of the 
same shape and size, the number of turns is also 
the same.

- Roto - inductor: consists of an 
electromagnet (powered by 1-way oscillations) 
rotating around a fixed axis. The rotor's job is to 
generate a variable magnetic field.

the unit is in operation, the generator generates 
a maximum power of 46 µW from 60 mg of 
acceleration at an external load of 4000 Ω.  
The power density can be calculated as 
approximately 307 W/m3. Energy conversion 
efficiency is about 30%.

The drawback of generators based on 
electromagnetic induction effect is the need 
for large magnets, resulting in large size and 
unsuitable for mobile applications.

Piezoelectric generator

The piezoelectric effect is one of the 
most popular and widely studied effects in 
the field of energy conversion. Devices that 
collect energy based on the piezoelectric effect 
operate on the piezoelectric properties of the 
materials they use. The piezoelectric effect in 
each material is described as the phenomenon in 
which a material generates an electrical charge 
(or potential difference) when acted upon by a 
mechanical stress. Some popular piezoelectric 
materials are studied and used such as quartz, 
Lead Zirconate Titanate (PZT), Zinc oxide (ZnO) 
or Polyvinylidene Fluoride (PVDF). These 
materials have been widely used to fabricate 
MEMS microelectromechanical systems and 
large piezoelectric energy collectors. In the last 
few years, along with the concept of micro/nano 
effect generator, piezoelectric materials have 
also been used to fabricate power converters 
based on the micro/nano piezoelectric effect.2-6

Electrostastic Induction generator

Electrostatic induction-based generators 
were one of the first human electromechanical 
energy conversion technologies in which a 
differential voltage was generated between 
two sheets of material leading to induced 
electrification static electricity.7-10 The best 
example of electrostatic induction-based 
generators are those that use Electret, which is 
a polymer that can hold electrostatic charges 
on their surfaces almost permanently. Before 
operating the device, a surface charge process is 

Figure 1. Micro generator structure based on 
electromagnetic induction.1

Most studies on small/tiny power 
generators based on electromagnetic induction 
are also conducted. A good example of a 
generator based on electromagnetic induction 
is the generator developed by Beeby's research 
group with the structure shown in Figure 1. The 
structure of this device consists of four magnets 
attached to the tip of the vibrating blade. When 
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carried out to create electrostatic charges on the 
surface of the electret. As the electret material 
moves, the electrostatic effect directs the 
electrons to move between the two electrodes 
under short-circuit conditions.

2. GENERATOR BASED ON TRIBOELECTRIC 
EFFECT

In recent years, a new electromechanical energy 
conversion mechanism named triboelectric 
generation has been developed as a new method 
for electromechanical energy conversion.11 

2.1. Triboelectric effect and Triboelectric 
nanogenerator

The Triboelectric effect (TE) is a classic physical 
phenomenon in which two dissimilar materials 
become electrically charged after rubbing against 
each other under the action of an external force. 
In human life, the electric friction effect occurs 
everywhere in the form of Contact Electrification 
(CE), on many kinds of things and manifests 
itself in the electrostatic phenomenon.12

The electric friction effect is one of 
the classic physical phenomena that has been 
explored for thousands of years. Although 
triboelectric effect is encountered every day, 
the mechanism of electric friction is still being 
studied. In general, scientists think that when 
two different materials physically rub together, 
a chemical bond is formed between some parts 
of the two planes and is collectively known 
as adhesion.13 Then, the charges will move 
from one material to another to balance their 
electrochemical potential. Those displaced 
charges can be electrons, ions, or material 
molecules. When the two materials are no longer 
rubbing against each other, some of the chemical 
bond atoms tend to retain electrons and a few 
other bonded atoms tend to give away electrons, 
thereby generating electric friction charges on 
the surface of materials.

The electric friction charge density is the 
most important value that determines the output 
signal of the nano friction generator. However, 
the origin of the electric friction charges or in 
other words the origin of the electric friction 
mechanism is not really clear, especially when 
the structure of TENG always contains at least 
one insulating material or polymer. Controversy 
surrounds the electric charge due to friction as a 
result of ion-electron transfer. The phenomenon 
of electrification due to friction is a very common 
one that can occur with a variety of materials, 
such as solid - solid, solid - liquid, solid – gas, etc. 
Therefore, the in-depth study of the phenomenon 
of electric charge due to friction will make a 
great contribution to the development of physics 
- chemistry - biology.

Wang and co-workers found that the 
mechanism of CE between two solids is ion 
exchange.14 Considering specifically for the case 
of a pair of triboelectric materials, a conductive 
and an insulator, surface state and Fermi level 
models were used to verify the above conclusion. 
If the distance between two materials is greater 
than the bond length (BE), the two atoms tend to 
attract each other. Experimental studies indicate 
that CE can only occur when the atomic distance 
is shorter than the bond length. To account for the 
exchange of electrons between two substances, 
electron cloud cover is used as shown in Figure 2.  
Figure 2a simulates the electron cloud of two 
materials before rubbing together. When two 
atoms of different matter come closer and rub 
against each other, a more electron cloud will 
cover the junction of the two electrons under the 
action of a force leading to a lowering of the 
potential barrier and allowing electrons move 
between the two atoms (Figure 2b). Mechanical 
force is essential to close the intraatomic gap 
and maximize electron cloud cover (Figures 2c 
and 2d). 
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Besides, photon emission is also believed 
to exist during CE and is being investigated 
for clarification. CE between solid and liquid 
materials has been studied and is thought to 
include two steps. The first step is the exchange 
of electrons between the solid and liquid material. 
The second step is the interaction between the 
different ions in the liquid. In research practice, 
ion absorption and electron exchange occur and 
exist at the liquid and solid interface.

2.2. The popular electrical friction materials

All materials known to man have tribological 
properties, including metals and polymers, 
fabrics, wood, etc. Therefore, all such materials 
can be suitable material objects for TENG 
studies in specific cases and also confirm the 
material choice for ghost generator application. 
nanoscale is extremely abundant.

However, whether that electric friction 
property is strong or weak depends greatly on 
the charge polarity of each material. Materials 
with strong tribological properties are usually 
low conductivity or dielectric. As a result, 
these materials tend to retain charges that travel 
between two material surfaces and retain those 
charges for long periods of time, resulting in 
the generation of electrostatic charges, which 
are causes of negative effects in daily life 
and the development of technology. The most 
obvious is the electric shock when touching 
the winter doorknob or sucking hair into nylon 
fabrics, etc. The positive/negative character of 
the charge generated by friction on materials 
depends on the intrinsic electrical polarity 
of the material relative to the material that is 
rubbing against it.

Figure 2. The process of electrification due to the friction of a pair of triboelectric materials.14

(a) (b)

(c) (d)
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Table 1. Comparison chart of electric friction properties of common materials.15

2.3. Capacitance characteristics of TENG

The working principle of TENG is a combination 
of the effect of electric friction and electrostatic 
induction. While electrical friction induces 

electrostatic charge polarization, electrostatic 
induction is the main mechanism for converting 
mechanical energy into electrical energy based 
on the existence of electrostatic charge that has 
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formed under the action of magnetism close 
to electricity. Studies on devices that operate 
on the electrostatic principle have shown that 
the formation of capacitors is the nature of 
the device, therefore, TENG also has inherent 
capacitive behavior/characteristics of current. 
electrostatic phenomena in matter.15

In order to clarify the inherent capacitive 
behavior of TENG, a simple structure of TENG 
consisting of a pair of electric friction (two 
different materials) is used for the analysis. Let 
the distance between two opposite surfaces of the 
materials be x, and suppose the charge passing 
through the two electrodes at the moment of 
consideration is Q and –Q, the potential difference 
between the two electrodes is contributed from 
two parts. The first part is the polarization of the 
charge generated by the electric friction process 
VOC(x). Besides, the displaced charge Q also 
contributes to the formation of this potential 
difference. If assuming that the charges caused 
by electric friction do not exist, then the electric 
friction pair structure is a mere capacitor, then 
the contribution of Q is calculated as –Q/C(x) 
where C is capacitance of the capacitor between 
two electrodes. Based on the principle of electric 
field superposition, the total potential difference 
between the two electrodes is:

V = -1/C(x) Q + VOC(x) (1)

The above equation is the basic equation 
for all TENGs and shows the capacitive nature 
of this type of device. During the operation of 
the TENG, the separation of the electric friction 
charges will form the potential difference 
between the two electrodes. If an external 
circuit is connected between the two electrodes, 
this potential difference will cause electrons to 
move from one electrode to another in order 
to balance the potential difference between the 
two electrodes. Under short circuit conditions 
(Short Circuit (SC), QSC balances the potential 
difference created by the electric friction charge 
polarization. From there, the QSC calculated 
from formula (1) is:

QSC(x) = C(x).VOC(x) (2)

The equivalent circuit of TENG is 
described as follows

Figure 3. Analog circuit showing the intrinsic 
characteristics of TENG.16

The impedance of the TENG is mostly the 
capacitance of the internal capacitor. With TENG 
designs, the intrinsic resistance of the device is 
almost immeasurable because of the mandatory 
insulation between the two electrodes. Therefore, 
in the equivalent circuit structure of TENG, this 
part of the resistance is ignored.

3. THE BASIC MECHANISM OF TENG

The basic model of TENG was first built with 
the structure shown in Figure 4. This structure 
uses two material sheets, Kapton and Polymethyl 
Methacrylate (PMMA) placed opposite each 
other, and metal electrodes coated on the other 
side of them. Figures 4a and 4b show how 
TENG operates under open circuit (OC) and 
short circuit (SC) conditions.

As shown in Figure 4a, in the initial state, 
no charge is generated or applied, and there is no 
potential difference between the two electrodes 
(Figure 4a-I). With a displacement by an external 
force, the two polymers are brought into contact. 
The charge moves across the surface at the 
contact area due to the effect of electric friction. 
The magnetic charge is injected (PMMA) into 
the Kapton, resulting in a negative charge at 
the Kapton surface and a positive charge at the 
PMMA surface. It is remarkable that the insulating 
properties of the polymers allow the retention of 
high charges for long periods of time for hours or 
even days. As confined to the surface, opposite 
charges are almost in the same plane, practically 
producing no potential difference between the 
two electrodes (Figure 4a-II).
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When the generator starts working, the 
Kapton pad tends to return to its original position 
due to its own resilience. When the two polymers 
separate, a potential difference is established 
between the two electrodes under open circuit 
conditions due to the charges separating during 
friction (Figure 4 a-III).

When the generator is active, Voc 
continues to increase until it reaches the 
maximum value when the Kapton membrane 
returns to its original state (Figure 4a-IV, V). 
Such a signal will be constant provided that 
the input impedance of the galvanometer is 
infinitely large. Once pressed immediately, the 
potential difference starts to decrease as the two 
polymer layers get closer together. As a result, 
the VOC decreased from the maximum value to 
zero when the two polymers were in full contact 
again (Figure 4a-V, VI).

If in the short-circuited state, a voltage 
difference is established as the two polymer 
sheets separate electrons from the upper 
electrode to the lower electrode (Figure 4b-III), 
resulting in an instantaneous current during 
the dissolution process. zoom (Figure 4b-IV). 
When we press the transmitter again, reducing 
the distance between the layers will cause the 
upper electrode to have a higher potential than 
the lower electrode. As a result, electrons are 
directed from the lower electrode back to the 
upper electrode, reducing the number of induced 
charges (Figure 4b-VI). This process corresponds 
to an instantaneous reverse current (Figure 4b-V). 
When the two polymers are in contact again, all 
induced charges are neutralized (Figure 4b-II). 
By explaining the above operating principle, it 
can be seen that the signal of TENGs has the 
form of alternating pulses.

Figure 4. Working mechanism of TENG in (a) circuit conditions and (b) short circuit conditions.16
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Based on the basic principle, scientists 
have divided into four different TENG modes as 
follows:

3.1. Vertical contact mode

The simplest design model of TENG is detailed in 
Figure 5. In this structure, two different insulating 
materials (or an insulator and a conductive 
material) are placed opposite (collectively, the 
triboelectric material). Each layer of insulation 
is covered with a metal electrode on the other 
side. When two layers of materials come to rub 
together in a perpendicular direction under the 
action of an external force, an electric friction 

charge will be generated at the surface of those 
two layers of material. Once the external force 
is removed, the two layers of material tend to 
separate and the distance between them gradually 
increases. Then, a potential difference between 
the two surfaces of the material will be generated, 
and, if the two electrodes are connected through 
an electrical circuit, the free charges generated 
in each electrode will move through the circuit 
to  balance, which is equal to the electric friction 
potential mentioned above. When the distance 
between the two rods returns to zero, the electric 
friction potential disappears and the electrons 
move in the opposite direction again.17

Figure 5. Detailed structure of TENG (a) using pairs of insulating materials and (b) using pairs of insulating and 
conductive materials. (c) Equivalent circuit of TENG using an insulating-conductive pair.17

Based on the types of electric friction 
materials shown in Figure 1.6, the vertical 
contact mechanism nano friction generators 
are divided into two main types: TENG using 
a pair of insulating materials (Figure 5a) and 
TENG using a pair of insulating and conductive 
materials (Figure 5b).

3.2. Horizontal sliding mode

Similar to the vertical contact mode, the 
horizontal slide mode also starts with two rods of 
different electro-frictional material coated with 
electrodes on opposite sides. Figure 6 describes 
the structure of STENG in detail according to 
the types of pairs of electric friction materials 
used. Initially, two rods of material are placed 
exactly on top of each other. When the external 
force causes them to slide relative to each other's 

surface and generate electric friction charges 
and charge polarization in the sliding direction, 
it generates electron flow in the external circuit 
to balance the generated electric field by electric 
friction charge. These sliding movements can 
be sliding in a horizontal plane or sliding in a 
curved surface.

Different from the vertical friction direction 
discussed in depth above, this mechanism of the 
nano friction generator operates in the form of 
the relative sliding friction of the two materials 
in the horizontal direction.

The nano friction generator works based 
on the charge distribution mechanism. In this 
model, STENG is also divided into two types 
based on the pair of materials used.
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Structural analysis uses two types 
of insulating materials as electrical friction 
materials, assuming the width w of the material 
layers is much larger than their respective 
thicknesses as shown in the figure. The length 
dimensions of the two insulating layers are l and 
their respective thicknesses are d1 and d2. Two 
metal electrodes are made on their remaining 
surfaces. If considered in the initial state, the 
two layers of material almost coincide, then 
when they start to move to rub horizontally, 
the rubbing distance is called x. At that time, 
the contact surface of the two materials will be 
charged oppositely at the non-contact surface 
due to the effect of electric friction. Assuming 
that the electric friction charges are evenly 
distributed at these two surfaces, let the electric 
friction charge density at the surface of material 
1 and - is the electric friction charge density at 
the surface of the object. The electric friction 
charge density in the overlapping area can be 
considered as o because the distance between 
them is close to each other.

3.3. Single electrode mode

The vertical contact and sliding mode TENG 
discussed above always require insulating 
materials with respective electrodes coated on 
the opposite surface. To overcome this weakness, 
several structures of TENG have been studied 
and completely ignored the relative motion of 
the electrodes. One of these two models is called 
single-electrode-mode nano-friction generators 
(Single Electrode TENG – SETENGs). In 
this section, the basic working mechanism of 
SETENGs will be discussed in detail.

 Many studies have been conducted 
to demonstrate the usability of SETENGs. In 
this structure, only one electrode is coated on 
the surface of a triboelectric material (primary 
electrode). Another electrode called the 
reference electrode is placed in any position or 
grounded. The two electrodes mentioned above 
have different roles. Similar to the two TENGs 
above, SETENGs have two modes of vertical 
contact and sliding mode with almost the same 
characteristics. Here, our research focuses mainly 
on the vertical exposure mode SETENGs.

The figure below shows the structure 
of SETENGs using a pair of conductive and 
insulating materials. In it, an insulator and a 
conductive sheet of length l and width w are 
placed opposite each other with a distance x to 
form an electric friction pair. The insulating layer 
has a thickness of d1 and the conductive layer 
has a thickness of dm. The reference electrode is 
about the same size as the primary electrode and 
is separated by a distance of g from the primary 
electrode.

Figure 6. Detailed structure of STENGs (a) using pairs of insulating materials and (b) using pairs of insulating and 
conductive materials.17

Figure 7. Basic theoretical model of SETENG.18
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The two electrodes are fixed in position 
while the insulator plate can be easily moved 
vertically under external force. As an inevitable 
result of the process of electrification due to 
friction, when two layers of triboelectric materials 
rub together, the surface of the insulating sheet 
becomes negatively charged with a surface 
charge density of –σ. Assuming that the electric 
friction charge is evenly distributed over the 
surface on a large scale, then the charge charged 
on the surface of the insulator is σwl. Let Q be 
the charge that moves from the primary charge 
to the counter charge, the charges at those two 
electrodes are σwl-Q and Q, respectively.

3.4. Freestanding electrode mode

In reality, a moving object cannot avoid 
becoming electrified by rubbing against other 
potential bodies or air. These charges remain 
on the surface for hours. If a pair of symmetric 
electrodes are placed underneath and of a size-
distance equivalent to that of the insulating rod, 
the relative near- and far-away movements of the 
insulating material cause the induced charges at 
the difference between the two electrodes leads 
to an electric current flowing between the two 
electrodes to balance the difference.

Vertical contact suspension electrode 
mode of TENG (Freestading TENG – FSTENG) 
suspension electrode model is described as shown 
in Figure 8. An insulating sheet of thickness 
d1 with an insulation constant of εr1 and two 
metal plates are placed opposite each other and 
form pairs of electric friction materials. These 
two metal plates also serve as two electrodes. 
The space between the two electrodes is called 
g. When an insulating sheet is subjected to an 
external force and comes into contact with two 
metal plates, both sides of it will be charged due 
to the phenomenon of electric friction. Assuming 
this surface charge density is –σ on both sides, at 
the same time the two metal plates will have the 
same amount of positive charge.

4. Performance enhancement methods 

Experimental and theoretical studies on TENG 
have shown that the electric friction charge 

Figure 8. Basic theoretical model of FETENG.19

density is the main factor that directly affects 
the performance of the TENG. In order to 
increase the density of electric friction charge, 
the commonly used methods are: treatment of 
material composition, increase of local contact 
area and change of environmental conditions.

Material composition handling

Surface chemical functional group 
treatment is a method which changes the 
functional groups coated on the friction surface 
to enhance the ability of the material surface to 
capture the charge during the electric friction 
process.20 Zhong Lin Wang's group employed this 
method when using functional groups (–NH2) 
introduced into the surface of Au. In this way, 
the output signal of TENG greatly increased. If 
the group (-NH2) is replaced by the group (–Cl), 
the performance of TENG is much worse.
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Increase the contact area by surface 
modification

The local contact area between two layers 
of materials can be significantly increased 
with surface modification by creating micro-
nanostructures on their surface. The two layers 
of materials can then come into deeper, more 
frictional contact because the surface structure 
allows for such a higher level of contact. Surface 
structures exploited include nanowires, cubic, 
pyramidal, and nanofiber surface structures. 
Surface treatment technologies are used such 
as chemical etching,21 plasma-electron-ray 
etching,22,23 lithography - lithography,24 fusion 
molding,25 or femtolaser,26 etc. All the methods 
mentioned significantly increase the efficiency 
of TENG from 3 to 21 times.

Changing environmental conditions

This method deals with influencing 
factors in the operating environment of TENG 
such as temperature or pressure, humidity, etc. 
Studies26-29 have shown the effect of temperature 
on the performance of TENG using teflon, 
showing that the TENG in this study can perform 
well and stably in the temperature range from 
20 oC to 100 oC. The temperature dependence 
of the performance is related to the dielectric 
coefficient and to the surface deterioration of 
the material under high temperature such as 
oxidation of the surface matter or the reduction 
of fluorine radicals.

According to studies, the main application 
directions of TENGs can be divided into four 
different areas including: micro-nano-scale 
energy sources for self-powered devices system; 
active sensors for biomedical, human-machine, 
human-machine interaction applications; low 
frequency mechanical energy harvesting 
equipment system; and power supplies for high 
voltage applications.30

5. POTENTIAL APPLICATION MICRO/
NANO ENERGY SOURCE

With the advantages such as light weight, low cost, 
plenty structural and material choices, TENG 

possess wide applications as micro power source 
for self-powered systems by harvest ambient 
energy, such as human movement, vibration, 
wind energy or water motion. Because of the 
outstanding performance at low frequencies, 
biomechanical energy harvesting using TENG is 
of great importance and has been explored since 
the early stages of TENG development.

Active sensing and self-powered sensors

Since TENG can directly convert a 
mechanical trigger into an electrical signal, it has 
been extensively studied for use as self-powered 
sensors, such as touch sensors, acoustic sensors, 
sensors, motion and acceleration, and even 
chemical sensors. With the rapid development 
of technology, the challenges of interaction and 
power/energy will be limitations for its further 
advancement.

Blue energy

Among the application of TENG in 
harvesting natural mechanical energy from 
wind, raindrop, and ultrasonic, the wave energy 
in ocean as blue energy is especially important, 
owing to the higher efficiency of TENG for 
harvesting low-frequency vibration energy 
compared with an electromagnetic generator. 
Compared to other prototypes of TENGs 
reported for the blue energy, the fully enclosed 
rolling spherical structure has been identified as 
the most promising method.

6. CONCLUSION

TENG has become a promising energy 
conversion technology due to its advantage in 
fabrication, low-cost, wide choice of materials 
and high efficiency. TENG operates by the 
combination of electrostatic induction effects 
and contact electrification. The ambient 
mechanical energy are in various forms such 
as rotation, motion, vibration, impact, etc. The 
devices structures can be considered in four 
models: vertical contact mode, sliding mode, 
freestanding mode and single electrode mode. 
TENG has many features such as light weight, 



Quy Nhon University Journal of Science, 2023, 17(5), 19-32 31
https://doi.org/10.52111/qnjs.2023.17502

QUY NHON UNIVERSITY
SCIENCEJOURNAL OF

high output strength and small volume, which 
makes it very interesting in the field of energy 
extraction. TENG can be a more efficient good 
solution for self-powered devices and systems 
fabrication. Moreover, TENG is expected to be 
the key technology leading to solution for energy 
crisis.
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TÓM TẮT

Bài báo này trình bày nghiên cứu về phát hiện tin giả dựa trên nội dung tin và ngữ cảnh xã hội sử dụng học 
máy. Đầu tiên, chúng tôi phân tích các khái niệm liên quan, các phương pháp phát hiện tin giả. Tiếp theo, chúng 
tôi mô hình hóa nhiệm vụ này như một bài toán phân lớp nhị phân, biểu diễn nội dung tin và ngữ cảnh xã hội dưới 
dạng véc-tơ đặc trưng. Sau đó, chúng tôi sử dụng một số thuật toán học máy để xây dựng mô hình phân lớp. Kết 
quả thực nghiệm với ba thuật toán học máy: Support Vector Machine, Naive Bayes và k-Nearest Neighbors trên bộ 
dữ liệu FakeNewsNet cho thấy hiệu quả của phương pháp đề xuất.
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ABSTRACT

This paper presents research on detecting fake news based on news content and social context approach 
using machine learning. First of all, we analyze related concepts, methods of detecting fake news. Next, we model 
this task as a binary classification problem, representing news content and social context as feature vectors. Then 
we use machine learning algorithms to build the classification model. Experimental results with three machine 
learning algorithms: Support Vector Machine, Naive Bayes and k-Nearest Neighbors on the FakeNewsNet dataset 
show the effectiveness of the proposed method.

Keywords: Fake news detection, news content, social context, classify, machine learning.
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1. INTRODUCTION

The development of online social media 
platforms (e.g. Facebook, Twitter, Instagram, 
etc.) brought about a significant increase in the 
accessibility of information on the one hand, 
and accelerated the propagation of fake news 
on the other hand. As a result, the influence of 
fake news is growing and threatening the safety 
of the community.1 The scope of fake news was 
most marked during the 2016 US presidential 
election campaign. The top 20 election fake 
news received 8,711,000 shares and comments 
on Facebook, larger than the total of 7,367,000 
shares and comments on top 20 election stories 
from 19 major media outlets.2

Distinguishing true news from fake 
news is one of the difficult tasks for humans. 
Psychosocial and media studies show that 
people's ability to detect deception ranges from 
55% –58%.3

There have been several expert-based 
manual fake news detection tools, platforms 
and websites (e.g. PolitiFact, Snopes) and 
community-based (e.g. Fiskkit, VAFC) so far. 
However, manual fake news detection is not 
suitable for the large amount of information 
generated, especially on social media.4 Therefore, 
the research direction fake news detection 
[automatic] has become a "hot" topic recently.5-9 

In which, fake news detection can be classified 



Quy Nhon University Journal of Science, 2023, 17(5), 33-44 35
https://doi.org/10.52111/qnjs.2023.17503

QUY NHON UNIVERSITY
SCIENCEJOURNAL OF

into two approaches namely (i) content-based 
and (ii) propagation-based.10-13

Content-based fake news can be detected 
by analyzing the news content. Meanwhile, 
propagation-based fake news detection exploits 
how news spread on social networks. The 
"life-cycle" of fake news has three basic 
stages: (1) content creation, (2) publication, 

and (3) propagation as illustrated in Figure 1. 
Propagation-based approach using social context 
information is difficult to apply in predicting 
fake news before the third stage (before fake 
news is spread on social media). Therefore, it is 
necessary to detect fake news early to prevent its 
spread (i.e., when fake news is at the publication 
stage and it has not yet spread widely).

Figure 1. Fake news life cycle and detection methods.2

In this paper, we present a research on 
detecting fake news according to content-based 
and social context approach using machine 
learning. The main contributions of the paper are: 

1) Analysis of related concepts, methods 
of detecting fake news.

2) Proposal of a method to detect fake 
news based on news content and social context 
using machine learning, including: (i) modeling 
this task as a binary classification problem; (ii) 
representing content at the lexical and social 
context level in the form of feature vectors; and 
(iii) using machine learning algorithms to build 
classification models.

3) Experiment to evaluate the effectiveness 
of classification models on the FakeNewsNet 
dataset.

The rest of the paper is organized as 
follows: Section 2 presents an overview of fake 
news and fake news detection. Section 3 then 
presents news content and social context-based 
fake news detection method using machine 
learning followed by Section 4 describing 
experiments. Section 5 wraps up the article with 
the conclusion.

2. OVERVIEW OF FAKE NEWS AND FAKE 
NEWS DETECTION

2.1. Definition of fake news

Current studies about fake news detection 
often involves the following concepts: fake 
news, false news, satire news, disinformation, 
misinformation, and rumor. These concepts can 
be distinguished based on three characteristics: 
(i) authenticity, (ii) intention, and (iii) whether 
information is news. Table 1 summarizes related 
concepts based on these characteristics.1 For 
example, disinformation has false authenticity 
[news or not news] with bad intentions.2

Table 1. Compare related concepts.

Concepts Authenticity Intention
News 
or not 
news?

Fake news False Bad News

False news False - News

Satire news - Not bad News

Disinformation False Bad -

Misinformation False - -

Rumor - - -
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According to Zhou,2 “fake news is 
intentionally false news published by a news 
outlet”. Typically, news agencies publish 
news in the form of articles with the following 
components: title, content, author (including 
user’s feedback) as illustrated in Figure 1.

2.2. Fake news detection methods

2.2.1. Content-based

Content-based approaches include (i) 
knowledge-based and (ii) style-based/writing-
style. Knowledge-based fake news detection 
evaluates the veracity of news by comparing 
knowledge drawn from verified news content 
with known facts (i.e. true knowledge). Similar 
to knowledge-based methods, style-based fake 
news detection also focuses on news content 
analysis. This process includes two steps called 
style representation (using language features) 
and style classification (using machine learning 
models). While the knowledge-based method 
mainly evaluates the authenticity of the news, 
the style-based method can assess the intention 
of the news.2,14-15

2.2.2. Propagation-based

Propagation-based approach uses social context 
information to detect fake news, for example, 
how fake news spreads on social networks, who 
spreads it, and how spreaders connect with each 
other. 

The news ecosystem on social media 
provides social contextual information regarding 
three basic entities: publishers, news [pieces], 
and users.

Figure 2 and Figure 3 illustrate the spread 
of news. In Figure 3, p1, p2 and p3 are the 
publisher of the news a1, ..., a4 and u1, ..., u6 are 
the users sharing these news. In addition, users 
tend to form social links with people with similar 
interests.16-17

Figure 2. Tree structure-based news propagation.

Figure 3. The relationship between publisher and user.

In general, the input to a propagation-
based method can be (i) news cascades or (ii) 
self-defined propagation graphs.

A news layer is a tree structure that 
represents the direct spread of news on social 
network (example in Figure 2).2 The root node 
corresponds to the user who first shared the 
news (i.e. the initiator); other nodes in the layer 
correspond to users who then forwarded the 
post after it was posted by the parent node. In a 
news propagation network (subgraph of a social 
network), each network corresponds to news, 
each node in the network represents a user, 
and an edge between two nodes represents the 
relationship of the two users. For example, in 
Figure 3, edge (p → a) represents publisher p 
publishing news a, edge (a → u) represents new 
a sspread by user u and edge (u1 → u2) is social 
relationship between u1 and u2.

16
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Thus, propagation-based fake news 
detection focuses on categorizing (i) news layers 
or (ii) self-defined graphs.

3. PROPOSED METHODS

In this section, we present a news content and 
social context-based fake news detection method 
using machine learning. First, we model this 
task as a binary classification problem. Next, we 
represent the news content at the lexical level 
according to the BoW model (Bag of Words) as 
a feature vector and connect to the social context 
vector. Then we use machine learning algorithms 
to build the classification model.

3.1. Problem definition

We consider the problem of detecting fake news 
based on content (part of text), where A = {a1, 
a2,..., an}  is the set of n news. Suppose the news 
to be verified a can be represented as a feature 
vector v ∈ Rk. The task of verifying the content-
based is defined a function f, such that:

Where y ∈{0,1}(0 – true news, 1- fake news)  
is the predicted label of the news and  
D = {(vi,yi)|vi ∈ Rk, yi ∈{0,1}, i = 1..n} is the 
training dataset. The training dataset D consists 
of n news, each news ai ∈ D is represented by the 
feature vector vi with the label yi.

And news content and social context 
based fake news detection problem is defined 
as follows: Let N = {n1, n2,…, n|N |} is a set of 
news, each of which is labeled as yi{0,1}, y = 1  
is the fake news and yi = 0 is the true news. 
The news ni is represented by the news content 
(news body) and side information such as (title, 
source, author, ...). When ni is posted on a social 
network, it is usually interacted with by social 
network users U = {u1, u2,…, u|U|}. Social context 
includes user interactions such as comments, 
posts, likes/shares, etc.

Each tuple (u, sc, t)  refer to user u’s context 
sc for news ni in timet . Here, a user can interact 
with a post multiple times. 

Task of this problem is to find a model M 
to predict the label y(ni) ∈{0,1} for each news 
based on the news content and social context. 
Therefore, this task is defined by Equation (3):

 

Where C(ni) is news content and SC(ni)  is 
the social context of the news. Figure 4 describes 
the problem of detecting fake news through news 
content and social context. 
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following auxiliary information: 

 Source (e.g. https://dantri.com.vn, 
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3.2. News content and social context

3.2.1. News content

News content is the main component that makes 
up the story/event (news body) and includes the 
following auxiliary information:

l Source (e.g. https://dantri.com.vn, 
https://saobiz.vn).

l Headline is the title that describes the 
main topic of the news. The title is often named 
so that it attracts the reader's attention.

l Author

l Publication time

3.2.2. Social context

The social context of a news can be posts, likes, 
shares, replies, etc. When the features relevant to 
the news content are insufficient or unavailable, 
the social context is useful information for 
authenticating the news. Ancillary information 
related to the social context is as follows:

l Social network users (user)

l Title is the title or short caption of the 
post. This title is closely related to the title of 
the news.

l Score is the rating for a post given by 
other users, which determines the acceptance or 
disapproval of the post by other users.

l Number of comments is the number of 
comments on a post, this characteristic shows 
the popularity of the post.

l The upvote/downvote ratio estimates 
the approval/disapproval of other user’s posts.

l User credibility: This is a feature that 
helps determine if users are prone to spreading 
fake news. For example, if the user's other posts 
are not trusted, it is likely that the next post will 
also be unreliable.

3.2.3. Representation of news content and social 
context

News content description features have four 
[language] levels: (i) lexicon, (ii) syntax, 

(iii) discourse and (iv) semantic. In this step, 
we represent the content at the lexical level 
according to the BoW model. Suppose the 
dataset contains n news  N = {n1, n2,…,n|N|}  with 
a total of t words W={w1, w1,…,wt}. Let xj

i is the 
number of words wj appearing in ni. Then, the 
normalized frequency of wj for the news ni is 
calculated according to Equation (4).

 

Thus, the new ni is represented as a feature 
vector vi = {w1, w1,…,wt}.

3.3. Classification model

Figure 5 shows an overview of the model that we 
propose to use.

l First, from the raw dataset (as shown in 
Figure 6), the data is preprocessed and extracted 
featuring news content and social context, 
respectively. The input is news content (identifier 
of news, publishing source, title of news, main 
content) and social context features (number 
of likes, number of shares, user identifier), the 
output is a vector representation of news content 
and social context. For each news ni ∈ A (set of 
news), we represent it as a feature vector vi ∈ Rk. 
This representation is tailored to each machine 
learning algorithm. The vector representations 
are combined to produce a single representation 
that is passed as input at the next stage. The final 
output is passed to the classifier.

l Next, we use machine learning algorithms 
to train the classification model (traditional 
machine learning algorithms such as Support 
Vector Machine (SVM), Naive Bayes (NB), 
k-Nearest Neighbor (k-NN)).

l Finally, we use the classification model 
to predict whether the input data is true or 
fake news. The model's prediction results are 
compared with actual (labeled) data to evaluate 
the model's effectiveness.
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Figure 5. Proposed model.

 

3.3.1. Naive Bayes 

Naive Bayes algorithm uses conditional 
probability between attributes and class label to 
determine the class of a data sample to be 
classified.18 

Let   is the training dataset:   
            . Where, each    is represented 
by a vector containing   attributes    
               . Let   be a set of labels 
consisting of   classes:               . 

Given the data 
sample               , the Naive Bayes 
classifier will predict   belong to class    if: 
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3.3.1. Naive Bayes

Naive Bayes algorithm uses conditional 
probability between attributes and class label 
to determine the class of a data sample to be 
classified.18

Let D is the training dataset: D = {X1, 
X2,…, Xn}. Where, each X1 is represented by a 
vector containing m attributes X1 = {xi1, xi2,…, xim}. 
Let C be a set of labels consisting of p classes:  
C = {C1,C2,…,Cp}.

Given the data sample X = {X1, X2,…, Xm},  
the Naive Bayes classifier will predict X 
belong to class Ci if: P(Ci│X) > P(Cj│X), 
(1 ≤ i, j ≤ p, i ≠ j). The process of classifying data 
sample X according to Naive Bayes algorithm is 
described in Algorithm 1.

3.3.2. Support Vector Machine

The main idea of the SVM algorithm is that 
given a training set represented in vector space, 
where each data sample is a point, this method 
finds a decision hyperplane h that can best divide 
the points on this space into separate classes. The 
quality of this hyperplane is determined by the 
distance of the nearest data point of each class to 
this plane. The larger the boundary distance, the 
better the decision plane, and the more accurate 
the classification. The purpose of the SVM 
algorithm is to find the maximum boundary 
distance to give the best classification result.19

Suppose we need to classify a data sample 
X into one of two classes C1 = -1 and C2 = 1. 
The SVM classification algorithm is detailed in 
Algorithm 2.

Figure 5. Proposed model.
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The SVM classification algorithm depends 
on the weight vector parameters W and the bias 
coefficient T. The goal of SVM is to estimate W 
and T to maximize the margin between the data 
classes.

3.3.3. k-Nearest Neighbor

k-NN is one of the simplest supervised learning 
algorithms. k-NN algorithm classifies new 
data points based on k nearest data points  
(k - neighbors). The measure used to calculate 
the distance between two data points can be 
Euclidean, Manhattan, Minkowski, Cosine.20 

Algorithm 3 describes the steps to classify a data 
point according to the k-NN algorithm.

Figure 6.  Part of the data in the GossipCop dataset.

4. EXPERIMENT

4.1. Dataset

A significant challenge for automated fake 
news detection is the availability and quality of 
datasets. In the experiment, we use two datasets 
PolitiFact and GossipCop.21

Table 2 describes the news type, size and 
number of label 1 (fake news) statistics of the 
datasets. PolitiFact dataset has news of the type 
of article, and it includes 1,056 news, in which 
432 news is fake news.

Table 2. Description of experimental data.

Dataset Type Size Number of 
label 1

PolitiFact article 1,056 432

GossipCop article 22,140 5,323

Figure 6 is a snapshot of the data in the 
GossipCop dataset. The data includes news 
content and social context. In which, the content 
features include id (identifier of news), news_url 
(publishing source), title (title of news), news_
body (main content), count_like (number of 
likes), count_share (number of shares), user_ids 
(user identifier, each with 18 numbers). For 
example, the first data line in Figure 6 has the 
following features:
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Figure 8. User identifier.

Figure 7. Main content of the news.

- id: gossipcop-2493749932

- news_url:

www.dailymail.co.uk/tvshowbiz/article- 
5874213/Did-Miley-CyrusLiam-Hemsworth-
secretly-married.html

- title: Did Miley Cyrus and Liam 
Hemsworth secretly get married?

- news_body: (Figure 7)

- count_like: 12096

- count_share: 5421

- user_ids: (Figure 8)

4.2. Experimental setup

We use three machine learning algorithms, 
including: SVM, NB, and k-NN to train 

classification models on two different datasets. 
From the input datasets, we preprocess the data 
by removing stop word and special symbols, 
then vectorize the data matching each algorithm 
at the lexical level.

The training data and the test data were 
split in a ratio of 8:2, using a 5-fold cross-
validation method.

To evaluate the classification models, we 
use the confusion matrix as shown in Table 3, 
where:

l TP (true positive): Number of news 
predicted to be fake news and actually fake news;

l FN (false negative): Number of news 
that are predicted to be fake news when in fact 
they are true;
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experimental results of the classification models 
on the datasets that are news content only 
(PolitiFact (C) and GossipCop (C)) and social 
context only, respectively (PolitiFact (SC) 
and GossipCop (SC)), and combine both news 
content and social context (PolitiFact (C+SC) 
and GossipCop (C+SC)). Experimental data 
show that all three classification models (SVM, 
NB and k-NN) achieve the measure of F1 above 
75%. It can be seen from the experimental 
results that when using a dataset combining 
news content and social context, almost all 
three models give better classification results. 
Specifically, when applying the k-NN algorithm 
on the PolitiFact (C+SC), the F1 measure is 7.4% 
higher when running on the PolitiFact (C) and 
7.7% higher when running on the PolitiFact 
(SC). In another case, when applying the SVM 
algorithm on the GossipCop (C+SC) dataset, the 
F1 measure is 2.8% higher when running on the 
GossipCop (C) dataset and 2.6% higher when 
running on the GossipCop(SC) dataset.

Figure 9 and Figure 10 show  the 
comparison of the F1 measure between the 
classifiers on PolitiFact(C), PolitiFact(SC) 
and PolitiFact(C+SC) datasets; and between 
classifiers on GossipCop(C), GossipCop(SC) 
and GossipCop (C+SC) datasets. Experimental 
results show that most algorithms applied to 
datasets that combine news content and social 
context give better results of measuring F1 when 
applied on datasets with only news content or 
social only social context.
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Fake news TP FP 
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l FP (false positive): Number of news that 
are predicted to be true when they are actually 
fake;

l TN (true negative): Number of news 
predicted to be true and in fact true.

Table 3. Confusion matrix performance.

Actual ↓ Prediction → Fake 
news

True 
news

Fake news TP FP

True news FN TN

P (Precision), R (Recall) and F1 is 
calculated as follows:

We implement machine learning 
algorithms and evaluate classification models 
based on the open source tool Scikit-learn.22 We 
use the following classification models:

l SVM classification model: SVC (kernel 
= linear)

l Naive Bayes classification model: 
GaussianNB()

l k-NN classification model: 
KNeighborsClassifier()

4.3. Results and discussion

Table 4, Table 5 and Table 6 present the 

Table 4. Experimental results on datasets with only news content.

Dataset→ PolitiFact (C) GossipCop (C)

Metric→ P R F1 P R F1

k-NN 0.609 0.995 0.755 0.827 0.879 0.852

NB 0.821 0.862 0.841 0.87 0.655 0.751

SVM 0.795 0.922 0.853 0.876 0.904 0.890
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Table 5. Experimental results on datasets with only social context.

Dataset→ PolitiFact (SC) GossipCop (SC)

Metric→ P R F1 P R F1

k-NN 0.603 1.0 0.752 0.831 0.894 0.861

NB 0.831 0.817 0.824 0.875 0.645 0.743

SVM 0.793 0.849 0.820 0.876 0.910 0.892

Table 6. Experimental results on datasets combining news content and social context.

Dataset→ PolitiFact (C+SC) GossipCop (C+SC)

Metric→ P R F1 P R F1

k-NN 0.887 0.779 0.829 0.798 0.856 0.826

NB 0.874 0.832 0.852 0.831 0.868 0.849

SVM 0.815 0.917 0.863 0.883 0.956 0.918

Figure 10. Compare the F1 measure on the 
GossipCop(C), GossipCop(SC) and GossipCop(C+SC) 
datasets.

Figure 9. Compare the F1 measure on the PolitiFact(C), 
PolitiFact(SC) and PolitiFact(C+SC) datasets.

5. CONCLUSION

In this paper, we have presented a research on 
detecting fake news based on news content and 
social context approach using machine learning. 

We have analyzed related concepts, methods of 
detecting fake news. We have modeled this task 
as a binary classification problem, representing 
content and social contexts as feature vectors. 
Then we used machine learning algorithms to 
build the classification model. Experimental 
results with three machine learning algorithms 
(SVM, NB and k-NN) on two different datasets 
show the effectiveness of the proposed method.

In the future, we plan to extend this 
study towards content analysis in terms of 
natural language processing at the syntactic and 
semantic levels, and build a Vietnamese dataset 
for research on fake news detection problem.
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TÓM TẮT

Kết quả nghiên cứu quy trình phân tích độc tố Aflatoxin B1 (AFB1) với kỹ thuật sắc ký lỏng siêu hiệu năng 
đầu dò khối phổ (MS) hai lần (UPLC-MS/MS) trong nền mẫu sản phẩm ngũ cốc dinh dưỡng cho trẻ em được 
thể hiện trong nghiên cứu này. Theo kết quả nghiên cứu, phương pháp UPLC-MS/MS xác định Aflatoxin B1 với 
thời gian lưu  4,07 phút bằng cách sử dụng cột BEH C18 1,7 µm (2,1×150 mm), pha động ở chế độ ingredient 2 
dung môi với tỷ lệ: 5 mM Amonium acetate/H2O và 0,1% HCOOH/MeOH, dung môi chiết mẫu là hỗn hợp của 
metanol/nước tỷ lệ 70:30 (v/v). Điều kiện phân mảnh để định lượng AFB1: cặp ion định lượng m/z: 313,05 > 285  
và cặp ion định tính (m/z) 313,05 > 241. Kết quả nghiên cứu cho thấy, hệ số xác định (R2) của đường chuẩn 
đạt giá trị trên 0,9993; độ lặp lại (nồng độ ≤ 1 µg/kg) trong khoảng (6,72 - 9,00)%; độ tái lặp đạt trong khoảng  
(7,89 - 10,4)%; giới hạn phát hiện (LOD) là 0,03 µg/kg; giới hạn định lượng (LOQ) 0,10 µg/kg và độ không đảm 
bảo đo (U, Uncertainty) là ±17,1%.

Từ khóa: Aflatoxin B1, UPLC-MS/MS (IAC), bột ngũ cốc cho trẻ nhỏ.

*Tác giả liên hệ chính. 
Email: hongedc@gmail.com, hiepdt@hufi.edu.vn,  pcnam@dut.udn.vn
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ABSTRACT

This work studied on developing the analytical procedure for determination of Aflatoxin B1 (AFB1) in 
cereal for infants by using ultra-performance liquid chromatography triple quadrupole mass spectrometry detector 
(UPLC-MS/MS). Under optimal conditions, the retention time of AFB1 is identified at 4.07 minutes as using BEH 
C18 1.7 µm (2.1×150 mm) column and mobile phase with two solutions gradient: 5 mM Ammonium acetate/H2O 
and 0.1% HCOOH/MeOH, and ratio methanol/water is 70/30 for extraction. The mass-to-charge ratio (m/z) of 
AFB1 for quantitative and qualitative analyses are 313.05 > 285 and 313.05 > 241, respectively. Furthermore, 
the obtained results are validated. Typically, the statistical parameters are significant such as linear correlation 
coefficient of determination (R2) ≥ 0.9993, repeatability (concentration ≤ 1 µg/kg) in range of (6.72 - 9.00)%, 
(7.89 - 10.4)% of reproducibility and uncertainty is ±17.1%, while the limit of detection (LOD) and the limit of 
quantitation (LOQ) are 0.03 µg/kg and 0.10 µg/kg, respectively.

Keywords: Aflatoxin B1, UPLC-MS/MS (IAC), cereal for infants.

*Corresponding authors. 
Email: hongedc@gmail.com, hiepdt@hufi.edu.vn, pcnam@dut.udn.vn

1. INTRODUCTION

Currently, food safety has become the most 
important issue in protecting the health of 
consumers in Vietnam as well as in the world. 
Foods that contain viruses, bacteria, biological 
toxins and toxic chemicals (such as synthetic 
dyes, antibiotic residues and pesticides, etc.) 
are considered unsafe and can cause diseases 
from diarrhea to cancer.1 They can be present 

in agricultural and food products such as 
peanuts, corn, wheat, and coffee, as well as in 
products that are made from these ingredients. 
Aspergillus, Fusarium, and Penicillium are the 
main fungi causing mycotoxins in agricultural 
products and foods. Up to now, more than 300 
types of mycotoxins have been identified and 
documented. However, the groups of mycotoxins 
that frequently contaminate food and animal feed 
are aflatoxins, ochratoxins, fumonisin, patulin, 
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zearalenone, deoxynivalenol, and T2-toxin.2 
Among them, the most influential and most 
concerned is aflatoxin (AF) which needs to be 
controlled. In high concentrations, aflatoxin can 
lead to acute poisoning (aflatoxicosis) and can be 
life-threatening, usually through liver damage. 
They can cause genetic changes, damage genes 
(DNA) and cause liver cancer in animals and 
humans.3 

Until now, about 17 different types of 
aflatoxin have been recorded and studied. Of 
these, the four most common bis-furanocoumarin 
compounds are named B1, B2, G1, and G2, 
respectively. In terms of prevalence, aflatoxin 
B1 (AFB1) is the most abundantly found in 
nature and culture, followed by aflatoxin G1 
(AFG1), aflatoxin B2 (AFB2), and then aflatoxin 
G2 (AFG2) and other substances have a rather 
low ratio.4 

Cereals are important in providing primary 
nutrients for the growth and development of 
infants and children. Therefore, the identification 
and analysis of food contaminants have become 
a crucial concern due to the presence of 
mycotoxins and other common contaminants in 
cereals. 5  In Vietnam, the Ministry of Health has 
set the maximum allowable limit for aflatoxin 
(B1) at 0.1 µg/kg.6

Most of the AFB1 analytical methods 
used fluorescence detector high performance 
liquid chromatography (HPLC/FLD) using 
trifluoroacetic acid (TFA) derivatives to achieve 
sensitivity, meeting the allowable limit for AFB1 
in food analysis. 

However, in the case of nutritional foods 
for children, only TCVN 9522:201212 has a 
declared level of LOD = 0.05 µg/kg, which is 
lower than the regulation. However, theoretically, 
it is not easy to get the LOQ to 0.1 µg/kg when 
the LOD is 0.05 µg/kg. In the Annex to the 
standard, AFB1 concentrations at a quantitative 
threshold of LOQ = 0.05 µg/kg can be analyzed 
by increasing the HPLC/FLD injection volume 
to 1000µL. However, this injection volume is 
difficult to implement and is not suitable for 

practice. If injected at this volume, it will clog 
the column, cross-contaminate, waste solvent 
chemicals, take time to perform and clean. 

Recent work by Nguyen Thanh Duy 
et al.7 has presented a procedure for aflatoxin 
B1, B2, G1 and G2 analysis by UPLC-FLD 
fluorescence detector super-performance liquid 
chromatography for shows that the method is 
selective, the standard curve is linear in the range 
of 0.5 - 7.5 µg/L, the recovery ranges from 80.7 
to 98.8% with the relative standard deviation 
(RSD) below 5% was obtained for each aflatoxin. 
The method detection limit (MDL) and method 
quantification limit (MQL) were 0.025 - 0.1 and 
0.075-0.3 μg/kg, respectively. In which the MDL 
of aflatoxin B1 is 0.1 μg/kg, therefore the MQL 
will not meet the maximum allowable limit of 
0.1 μg/kg. 

In addition, compared with other analytical 
methods, the UPLC-MS/MS method applied to 
analyze AFB1 in nutritional cereals for children 
is evaluated to have the advantage of increasing 
selectivity and meeting current regulatory 
levels, operating more environmentally friendly, 
reducing analysis time, reducing operating 
pressure, reducing solvent costs, reducing 
environmental pollution.8 Several papers reported 
that this method is sensitive, rapid, and durable 
enough for multiple mycotoxin determinations 
that fulfill international testing criteria.9

As an  analytical method, this study has 
focused on the development and validation of a 
ultra-performance liquid chromatography with 
triple quadrupole mass spectrometer (UPLC-
MS/MS) method for the determination of AFB1 
toxin in the sample matrix namely cereal for 
infants. 

2. APPARATUS, MATERIALS, AND METHODS

2.1. Apparatus 

- The experiments were carried out at Khue 
Nam Science and Technology Service Co., 
Ltd – address: 2/17 Pham Van Bach, Ward 15, 
Tan Binh District, Ho Chi Minh City, Vietnam 
(https://khuenam.vn/nang-luc.php).
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- The equipment used is the Acquity 
UPLC- MS/MS Xevo TQD by Waters supplier, 
and the  analytical column is BEH C18 1.7 µm 
(2.1 × 150 mm).

- Other instruments and supporting 
equipment are required (solid phase extractor, 
centrifuge, ultrasonic machine, vortex...).

2.2. Chemicals 

2.2.1. Reagents and standards

The chemicals in this study are methanol 
(MeOH), formic acid (HCOOH) of HPLC 
grade, NaCl with a purity of ≥ 99%, and 
phosphate buffer solution pH 7.4 (PBS), water 
of HPLC grade. The immunoaffinity column 
used is Aflatoxin with a column volume of 3 mL  
(IAC- AflaTest of Romer Lab). The stock solution 
of aflatoxin standard mixture consists of B1  
(10 µg/mL), B2 (3 µg/mL), G1 (10 µg/mL), G2 
(3 µg/mL) diluted in acetonitrile solvent.

2.2.2. Standard preparation

Intermediate mixed standard of 260 µg/L, 26 
µg/L was prepared from a stock standard of 2600 
µg/mL of acetonitrile (ACN) solvent, in which 
concentration of AFB1 standard is 1000 µg/L.

Working solutions were used to make a 
standard calibration curve of five points in AFB1 
concentration of 0.2, 0.4, 0.8, 1.6, 3.2 µg/L. MeOH 
is solvent in preparing the calibration curve.

2.2.3. Solution preparation

MeOH/H2O extraction solution (70/30) by 
volume: 150 mL of water was mixed with 350 
mL of MeOH.

Phosphate buffer salt (PBS): Dissolve 
8.0 g of sodium chloride, 1.2 g of anhydrous 
disodium hydrogen phosphate or 2.9 g of 

Na2HPO4.12H2O, 0.2 g of potassium dihydrogen 
phosphate, and 0.2 g of potassium chloride in 900 
mL of DI water. After dissolving, adjust the pH to 
7.4 using hydrochloric acid or sodium hydroxide 
solution appropriately 5 mM ammonium acetate 
solution: Dissolve 0.385 g amonium acetate in 
1.0 L of water in HPLC grade. 

0.1% HCOOH/MeOH solution: Transfer 
1.0 mL of formic acid into a 1.0 L volumetric 
flask and make up to the mark with MeOH. 

2.2.4. Cereal sample preparation

The cereal powder sample was homogenized 
using a dry grinder. 10g of weighed powder 
was transferred to a centrifuge tube and  
40 mL of MeOH/H2O = 70/30 (v/v) was added. 
The mixture was vortexed for 1.0 minute and 
shaken for 30 minutes. It was sonicated for 30 
minutes to extract the sample, then centrifuged 
at 3000 rpm for 5 minutes. The solution was 
filtered through a ∅110 mm diameter filter 
paper. 10 mL of the filtrate was collected and 
mixed with 20 mL of PBS buffer. The solution 
was gently mixed and passed through an IAC 
column. The column was washed twice with 20 
mL of distilled water. The column was dried and 
eluted with 1.0 mL of MeOH. The eluate was 
filtered through a 0.22 µm PTFE membrane and 
analyzed using UPLC-MS/MS.9  

2.3. Chromatographic conditions

To develop an analytical procedure for testing 
AFB1 in cereal powder using ultra-high 
performance liquid chromatography-tandem mass 
spectrometry (UPLC-MS/MS) without using 
derivatives, the chromatographic conditions, 
including the mobile phase and fragmentation 
conditions, are listed in Tables 1 and 2.

Table 1. Mobile phase condition.

Time Flow rate (mL/min) %A %B
Initial 0.30 90 10
4.00 0.30 0 100
5.00 0.30 0 100
6.00 0.30 90 10
7.00 0.30 90 10

Solution A (5 mM Ammonium acetate/H2O); Solution B (0,1% HCOOH in MeOH)
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Table 2. Fragmentation condition.

Analytes
Precursor ion

(m/z)
Product ion

(m/z)
Cone Volt

(V)
Collision energy

(eV)

Aflatoxin B1 313.05 241.00 50 30

Aflatoxin B1 313.05 285.00 (*) 50 37
(*) Quantitative ion 

From this evaluation result, we certainly 
confirm that the UPLC-MS/MS method 
developed in this study can be used to determine 
the AFB1 content in the actual sample. That is 
the basis for studying and analyzing AFB1 on a 
sample of nutritious cereal powder for children 
in Ho Chi Minh City market.

3.3 Analysis of nutritional cereal powder 
samples for children in the Ho Chi Minh city 
market  

To evaluate the AFB1 content on the actual 
sample, conduct an assessment of the AFB1 
content of the sample "Supplementary Food 
Supplements Vanilla Organic Milk Powder 
with Vitamin B1 Babybio/Infant Cereals 
Vanilla/Babybio Céréales Vanille". Samples 
of weaning powder including cereals and milk 
for children over six months old, batch number: 
3288131500102. According to the analytical 
procedure UPLC-MS/MS has been developed 
and evaluated as described in Section 3.1. and 
3.2. The analysis results obtained for the specific 
sample are shown in Figure 4.

From the analytical results obtained on 
the chromatogram (Figure 2C), we can conclude 
that the proposed and validated method is UPLC-
MS/MS, which is a highly accurate and sensitive 
analytical technique. The method's limit of 
quantitation (LOQ) is 0.10 µg/kg, which means 
that it is capable of detecting very low levels of 
AFB1 in a sample of Babybio/Infant Cereals 
Vanilla/Babybio Céréales Vanille.

3. RESULTS AND DISCUSSION

3.1. Determination of the linearity of the 
standard curve

Calibration curve for AFB1 was constructed 
based on AFB1 standard solution in MeOH with 
five specific standards of 0.2; 0.4; 0.8; 1.6; 3.2 
µg/L, the results of the calibration curve are 
presented in Figure 1.

The statistical analysis was performed 
using the least-squares method, and the resulting 
linear equation was AUC = 1028.75×Conc. - 
29.36 with a coefficient of determination, (R2) ≥ 
0.9993. Here, AUC represents the peak area and 
Conc. stands for the concentration of AFB1.

3.2. Method evaluation

To evaluate the analysis method for determining 
AFB1 content, the method parameters were 
analyzed and evaluated. The evaluated 
parameters include repeatability, reproducibility, 
recovery efficiency, measurement uncertainty, 
limit of detection, and limit of quantification, 
which are specifically presented in Table 3.

Figure 1. The calibration curve for determination  
of AFB1. 
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Table 3. The results of the evaluation of the analytical method through the parameters.

No Parameters Criteria 11 Result Evaluation

1 Linearity of the standard curve R2 ≥ 0.99 R2 ≥ 0.9993 Qualified

2 Repeatability (C ≤ 1µg/kg) RSDr ≤ 30% 6.72 - 9.00 Qualified

3 Reproducibility (C ≤ 1µg/kg) RSDR ≤ 45% 7.89 - 10.4 Qualified

4 Recovery efficiency 40 -120% 73.6 - 110 Qualified

5 Limit of detection (LOD), µg/kg 0.03 0.03 Qualified

6 Limit of quantitation (LOQ), µg/kg 0.10 0.10 Qualified

7 Uncertainty of measurement (%) - ± 17.1 -

Figure 2. UPLC-MS/MS chromatograms of aflatoxins: (A) standard AFB1 blank sample (B) concentration control 
sample (< 0.1 g/kg) (C) supplemental food sample powdered organic milk powder with added vanilla flavor 
vitamin B1 Babybio/Infant Cereals Vanilla/Babybio Céréales Vanille. 
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3.4 Quality assurance of test results by 
interlaboratory comparison 

In order to verify the reliability of the analysis 
process, it is recommended to send an 
interlaboratory comparison sample to the Ho 
Chi Minh City Center for Laboratory Analysis 
Service (CASE), under the Department of 
Science and Technology in Ho Chi Minh City. 
The following steps should be followed: i) Take 
a sample of Babybio cereal powder that has 
not been analyzed for AFB1, spike the AFB1 
concentration at 0.2 µg/kg and divide into three 
equal parts of 10g each in a centrifuge tube.  

ii)  One tube sends to CASE, 1 tube to be made at 
the laboratory, 1 tube to store samples (Figure 3).

Figure 3. Samples of cereal powder after adding 
standards for quality assurance of test results.

Table 4. Results of analysis of AFB1 content in control laboratories.

Place of testing Methods AFB1 (µg/kg) Recovery efficiency (%) RSDR (%)

In this work AOAC 2005.08* 0.19 95% 2.1%

CASE CASE.SK.0018** 0.22 110% 2.1%

* Validated method
** The method published by “Khue Nam” analytical center

Based on the analysis results presented in 
Table 4, it can be inferred that the method used 
for interlaboratory comparison was found to be 
satisfactory with a reproducibility of 2.1% and 
a recovery efficiency of 95 - 110%. Therefore, 
the method described in this work has been 
validated.

4. CONCLUSIONS

The analytical procedure for determining the 
content of Aflatoxin B1 by UPLC-MS/MS 
method has been developed in samples of 
nutritious cereal powder for children. The 
method of determining the content of Aflatoxin 
B1 by UPLC-MS/MS method has been validated 
in samples of nutritious cereal powder for 
children. 

This method has the advantage of a simple 
sample processing technique, and the results of 
the verification of the analytical parameters are 
in line with the standards allowed by AOAC. 

Parameters such as selectivity, calibration curve, 
residual solvent, repeatability, reproducibility, 
recovery efficiency, measurement uncertainty, 
sample stability on UPLC-MS/MS with 
collection efficiency recovery ranged from 73.6 
to 110% with a relative standard deviation of 
less than 15%, detection limit of 0.03 µg/kg and 
limit of quantification 0.1 µg/kg meeting the 
strict regulation of AFB1 in powders Weaning 
food for children from 6 months to 36 months 
according to QCVN 8:1:2011/BYT. 

We have applied this developed analysis 
and appraisal process to analyze AFB1 in a 
sample of baby food powder. The product is 
a supplement that contains organic vanilla-
flavored milk mixed with vitamin B1, meant 
for infants and is called Babybio/Infant Cereals 
Vanilla/Babybio Céréales Vanille. The result of 
the analysis is that AFB1 was not detected in the 
sample. 
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TÓM TẮT

Trong nghiên cứu này, CoFe2O4/rGO đã được tổng hợp. Hình thái và cấu trúc của CoFe2O4/rGO được đặc 
trưng bởi giản đồ nhiễu xạ tia X (XRD), phổ tán xạ năng lượng tia X (EDX), hiển vi điện tử quét (SEM) và quang 
phổ hồng ngoại biến đổi Fourier (FT-IR). Điện cực dán than chì biến tính bởi CoFe2O4/rGO (GPE-CoFe2O4/rGO) 
đã được chuẩn bị và sử dụng để phát hiện dư lượng kháng sinh ciprofloxacin (Cip). Một phương pháp phân tích 
Cip đã được xây dựng trong các điều kiện tối ưu với khoảng tuyến tính là 0,5 - 100 µM (R2 = 0,991). Giới hạn phát 
hiện và giới hạn định lượng của phương pháp phân tích được xác định lần lượt là 0,094 µM và 0,314 µM. Nồng 
độ Cip trong các mẫu nước thải nuôi trồng thủy hải sản ở Bình Định được xác định bằng phương pháp đề xuất với 
độ thu hồi đạt từ 93,7–101,0%.

Từ khóa: CoFe2O4 , graphene oxide bị khử, graphite paste electrode, Von – Ampe hòa tan anot sóng vuông, 
ciprofloxacin.

*Tác giả liên hệ chính.
Email: nguyenthilieu@qnu.edu.vn 
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ABSTRACT

In the present study, CoFe2O4/reduced graphene oxide (CoFe2O4/rGO) has been synthesized. The morphology 
and structure of nanocomposites CoFe2O4/rGO were characterized by X-ray diffraction (XRD), Energy Dispersive 
X-Ray spectrometer (EDX), scanning electron microscopy (SEM), and Fourier Transform infrared spectroscopy 
(FTIR). The CoFe2O4/rGO modified graphite paste electrode (GPE-CoFe2O4/rGO) was prepared and used for the 
electrochemical detection of ciprofloxacin (Cip) antibiotic residues. A Cip analytical method formed under the 
optimal conditions had a good linear relationship between the Cip signal with its concentration range from 0.5 to 
100 µM (R2 = 0.991). The limit of detection and quantity was observed as 0.094 µM and 0.314 µM, respectively. 
Finally, Cip concentration in aquaculture wastewater samples was determined by the proposed method with 
recovery = 93.7–101.0%.

Keywords: CoFe2O4, reduced graphene oxide, graphite paste electrode, square wave anodic stripping voltammetry, 
ciprofloxacin.

*Corresponding author. 
Email: nguyenthilieu@qnu.edu.vn

1. INTRODUCTION

Reduced graphene oxide (rGO) has 
electrical conductivity, high surface area, 
and electrochemical stability that can be 
used to manufacture electrodes. Recently, 
rGO-supported composites have indicated 
fascinating advantages as a sensing platform 
in electrochemical sensors.1 Among them 
are composites of rGO and spinel ferrites 
nanoparticles with the chemical formula CoFe2O4 
which is a very important magnetic material,2 
and can appreciate the optical, magnetic, and 
electrochemical properties of rGO.3 CoFe2O4 
nanoparticles have attracted increasing interest 
in the construction of sensors because of 

their low toxicity, strong superparamagnetic 
properties, easy preparation, and high adsorption 
ability. Its composite with rGO can improve 
rGO characteristics. Accordingly, a combination 
of CoFe2O4 with rGO is hoped to result in a 
composite with electrical conductivity, high 
surface area, and a possibility of application in 
electrochemistry.

The use of antibiotics and other 
chemicals is common in aquaculture. More 
than 20 antibiotics have been used to prevent 
and treat diseases in shrimp and fish farming, 
including banned antibiotics. Interestingly, 
the most used antibiotic in shrimp farming is 
Ciprofloxacin (CIP), which has been banned 
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for a long time. The antibiotic Ciprofloxacin 
has the IUPAC name: 1-cyclopropyl-6-fluoro-
4-oxo-7-(piperazin-1-yl) quinoline-3-carboxylic 
acid. Ciprofloxacin belongs to the quinolone 
antibiotic class. A wide range of techniques have 
been used for the determination of CIP, such as 
spectrophotometry,4,5 capillary electrophoresis,6 

spectrofluorometry,7,8 high-performance liquid 
chromatography (HPLC),9,10 and electrochemical 
analysis.11,12,13 Among all the above, the 
electrochemical technique may be the most 
widely applied owing to its advantages of low 
cost, relatively short analysis time compared to 
other analytical techniques, simple instruction, 
high sensitivity, and facile miniaturization. 

The use of CoFe2O4/rGO composite 
materials as electrode materials in analyzing 
Cip antibiotics by electrochemical method 
has not been of interest in the country and the 
world. The electrodes modified by CoFe2O4/rGO 
nanocomposite materials have the advantage 
of increasing selectivity and increasing the 
sensitivity of the analysis, and the limit of 
detecting antibiotics on these electrodes is 
reduced. This research reported the synthesis of 
CoFe2O4/rGO and its application as electrode 
materials to analyze ciprofloxacin antibiotic 
residues in aquaculture wastewater. 

2. MATERIALS AND METHODS

2.1. Reagents and apparatus

Chemicals: Ciprofloxacin hydrochloride 
(C17H18FN3O3·HCl.H2O (Cip), 98.0%) was 
purchased from TCI company Japan. Graphite 
powder and paraffin oil were received from 
Sigma-Aldrich. Fe(NO3)3.9H2O; CoCl2.6H2O 
were purchased from Macklin (China), absolute 
ethanol (C2H5OH), ammonia (NH4OH), KH2PO4, 
K2HPO4 were purchased from Guangdong – 
Guanghua Sci-Techn Co. Ltd (China). 

2.2. Preparation of CoFe2O4/rGO material

At first, prepare a mixture containing 50 mL of 
distilled water, 30 mL of ethanol, and 0.10 g 
rGO and stir for 10 minutes. Ultrasonic vibration 
for 1 hour is mixed 1. Subsequently, add 3.232 g 

Fe(NO3)3.9H2O and 0.952 g CoCl2.6H2O to 
the above mixture, and stir for 60 minutes. 
Afterwards, add another 15 mL solution NH3 
and stir for another 120 minutes. Then transfer 
the entire solution to the Teflon flask, and 
conduct hydrothermal at 180 oC for 12 hours 
(in the drying oven). Finally, filter and wash 
the precipitate several times with distilled water 
and ethanol (until pH = 7). Dried under at 60 oC 
for 24 hours. Heating the solid at 500 oC for 5 
hours.14,15 CoFe2O4/rGO was obtained. 

2.3. Preparation of CoFe2O4/rGO-GPE 
modified electrode

The CoFe2O4/rGO-GPE modified electrode was 
prepared by thoroughly mixing 40 mg of graphite 
powder and 10 mg CoFe2O4/rGO powder with 
15 µL of paraffin oil. The obtained paste was put 
into the cavity of a Teflon holder. The obtained 
electrode surface was smoothed using paper. 
Next, using an in pin, stuff the resulting paste 
into an inlet tube 52 mm long, inner diameter 
(3.0 ± 0.1 mm), the upper part has a metal pin 
that can be connected to the electrochemical 
machine as an electric current. 

2.4.  Electrochemical measurements 

Electrochemical measurements (cyclic 
voltammetric (CV) and square wave voltammetry 
(SWV) were performed on a system Autolab 
Electrochemical CPA-HH5 (Hanoi, Vietnam), 
with a three-electrode configuration (GPE-
CoFe2O4/rGO modified electrode or GPE 
unmodified electrode as a working electrode, 
Ag/AgCl reference electrode, and platinum wire 
as an auxiliary electrode.

All experiments described in this section 
were performed at room temperature (25 ± 1 oC).

3. RESULTS AND DISCUSSION

3.1. Morpho-structural characterization of 
CoFe2O4/rGO material

3.1.1. XRD and TEM study

Figure 1 shows the XRD patterns of the 
CoFe2O4/rGO composite. The peaks at 2θ values 
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of 30.5; 35.7; 43.3; 57.1, and 62.9 correspond to 
respective (220), (311), (400), (511), and (440) 
are consistent with the spinel ferrite structure 
of CoFe2O4 (JCPDS 75 – 0033).16 Apart from 
the characteristic lines for the spinel cubic 
crystal structure of the oxide compound, no 
other peaks can be observed indicating the high 
purity of CoFe2O4/rGO. This result is completely 
consistent with previous publications.16,17

The TEM image of the CoFe2O4/rGO 
shows the appearance of sharp CoFe2O4 particles 
with size about 50 nm on the surface of rGO thin 
sheets (Figure 2).

Figure 1. XRD pattern of CoFe2O4/rGO.

Figure 2. TEM images of CoFe2O4/rGO.

3.1.2. FTIR study

The FTIR spectrum of the CoFe2O4/rGO 
nanocomposites is shown in Figure 3. The O–H 
stretching vibration of absorbed water molecules 
and structural O−H groups is shown as a typical 
peak at 3448 cm-1 with an observed peak at 

1720 cm–1 assigned for the carboxylic (C=O) 
functional groups. The O–H bending vibration 
can be observed as a peak at 1536 cm–1. The 
presence of an absorption peak at wave number 
592 cm-1

  is believed to be the strain oscillation 
of the Fe (Co)- O bond in cobalt ferrite shown in 
the FTIR spectrum of CoFe2O4/rGO. Fe (Co)- O 
bonds are formed due to electrostatic attraction 
between functional groups (COOH, COH) 
on the rGO surface with Co2+ and Fe3+.18 This 
evidence confirms the cobalt ferrite precursor in 
the obtained rGO.

Figure 3. FTIR pattern of CoFe2O4/rGO.

3.1.3. SEM Analysis

The surface morphology of the CoFe2O4/rGO is 
investigated by SEM with different scales. 

Figure 4. SEM images of CoFe2O4/rGO with different 
scales.
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The surface morphology of CoFe2O4/rGO 
with different scales shown in Figure 4a-b is the 
CoFe2O4 particles with a particle size of about 
30-50 nm dispersed on rGO sheets according to 
an ordered structure conducive to the diffusion 
process and analyte adsorption.

3.1.4. EDX study

Figure 5. EDX spectra of CoFe2O4/rGO.

The analysis of the Energy Dispersive X-Ray 
spectrometer pattern in Figure 5 confirms the 
existence of C, O, Fe, and Co elements in the 
composites. The results show the presence of 4 
elements C, O, Fe, and Co with the respective 
mass ratios of 12.53%; 39.02%; 32.13%, and 
16.32%. The ratio of Fe/Co atoms was found 
to be 2:1, confirming the successful formation 
of the CoFe2O4/rGO structure. This result is 
completely consistent with the results of the 
previous studies. 

3.2. Electrochemical results analysis 

3.2.1. Electrochemical behavior of GPE and 
GPE modified CoFe2O4  /rGO 

Figure 6. Cyclic voltammograms were obtained at a 
bare GPE and GPE-CoFe2O4/rGO in 0.2 M phosphate 
buffer solution (PBS), pH, 7.0 containing 5 mM 
K3Fe(CN)6 at a scan rate of 0.1 V.s-1.

The cyclic voltammograms of a GPE and GPE 
modified CoFe2O4/rGO (GPE-CoFe2O4/rGO) in 
5 mM K3Fe(CN)6 dissolved in 0.2 M phosphate 
buffer solution (PBS), pH, 7.0 showed the 
electrochemical behavior of the electrode. The 
electrochemical peaks of the bare GPE in the 
PBS are low. Their electrochemical peaks could 
also be observed at the GPE-CoFe2O4/rGO, with 
the intensity increased significantly. Based on the 
Randles-Sevcik equation, the electrochemically 
active surface areas of the GPE-CoFe2O4/rGO 
modified electrode were calculated as 0.2182 cm2  
larger than the bare GPE (0.0501 cm2). The 
surface area calculated according to the BET 
model of the GPE-CoFe2O4/rGO modified 
electrode is 54.903 m2/g, which is nearly 4 times 
higher than that of the bare GPE. This result 
is completely consistent with the calculation 
results  based on the Randles-Sevcik equation.

3.2.2. Analytical performance of the CoFe2O4 / 
rGO modified graphite paste electrode (GPE-
CoFe2O4 /rGO)

Linear range: To investigate the ciprofloxacin 
analytical performance on the proposed 
electrode, SWV was carried out in Cip solutions 
with concentrations ranging from 0.5 ÷ 150 µM 
under optimal conditions (0.2 M phosphate buffer 
solution (pH = 2.0) with 240 s accumulation 
time, 50 mV pulse amplitude, and 0.25 V.s-1 scan 
rate). The wide linearity range was good in the 
range of 0.5 – 100.0 µM. The corresponding 
calibration plot is I(µA) = 0.7064 + 0.0995 × C 
(µM). The SWASVs and linear regression lines/
equations for the  Cip are shown in Figure 7a and 
7b, respectively.

Limit of detection (LOD): The limit of 
detection (LOD) was calculated as 3σ. The LOD 
was found as 0.094 µM and LOQ = 3× LOD 
= 0.314 µM. Table 1 presents the performance 
of various modified sensors in Cip analysis for 
comparison. 
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Figure 7. SWVs of  Cip samples ranging in 
concentration from 0.5 to 100.0 µM (a) and the 
relationship between Cip concentrations with 
corresponding peak current (b).

3.3. Real sample analysis   

A real sample tested by the proposed method is 
four samples of shrimp farming wastewater in 
Binh Dinh province, Vietnam.

Measurement results are in Table 2. The 
trueness is evaluated through the recovery of the 
experimental results measured in the real sample 
with three individual measurements. Table 2 
exhibits the obtained analytical results in four 
samples of shrimp farming wastewater in Binh 
Dinh with recovery values in the range of 93.7% 
to 101.0%, proving that the measurement has 
good precision.

The results of the analysis of farmed 
shrimp samples showed that the Cip antibiotic 
index exceeded the allowable threshold from 
1.8 to 3.0 times. Thus, it can be concluded that 
wastewater from shrimp ponds is a source of 
pollution. If this water source is discharged 
directly into the environment, the risk of 
environmental pollution and disease spread 
is very high. It also facilitates the growth of 
antibiotic-resistant bacteria.

Table 1. Comparison of the data obtained using various electrodes for the determination of Cip.

Electrode Method LOD
(µM)

Range (µM) Ref.

Graphene SPCE SWV 0.1 0.1-100 [19]

Ch-AuMIP/GCE DPV 0.21 1-100  [20]

PANI – β–CD/fMWCNT 0.05 10-80 [21]

MgFe2O4-MWCNTs/GCE CV 0.01 0.1-1000 [13]

MWCNT/GCE CV 6 40-1000 [22]

GPE-CoFe2O4/rGO SWV 0.094 0.5-100 This work

SWV: Square Wave Voltammetry, DPV: Differential Pulse Voltammetry, CV: Cyclic Voltammetry, SPCE: Screen 
printed carbon electrode, MIP: Molecularly Imprinted Polymer, GCE: glassy carbon electrode, PANI: PolyAniline, 
β-CD: β – cyclodextrin, MWCNT: Multi-Walled Carbon Nanotube, GPE: graphite paste electrode.
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Table 2. Analytical results for the Cip determination using GPE-CoFe2O4/rGO in aquaculture wastewater samples 
in Binh Dinh province, Vietnam.

Sample
Cip  (µM)

Sample location Added Found Recovery(%)

Samples of wastewater 1
13°50'03.3"N 
109°11'40.8"E

0 0.53 ± 0.26

100.1Tuy Phuoc, 
Binh Dinh

10 10.54 ± 0.22

Samples of wastewater 2
13°49'47.0"N 
109°11'18.7"E

0 0.92 ± 0.25
99.4Tuy Phuoc, 

Binh Dinh
10 10.86 ± 0.28

Samples of wastewater 3
14°22'10.7"N 
109°07'17.3"E

0 0.66 ± 0.33
101.0Phu My,  

Binh Dinh
10 10.76 ± 0.27

Samples of wastewater 4
14°22'10.8"N 
109°07'17.0"E

0 0.85 ± 0.19
93.7Phu My,  

Binh Dinh
10 10.22 ± 0.26

4. CONCLUSIONS

CoFe2O4/reduced graphene oxide nanocomposite 
material was successfully synthesized by a 
simple easy hydrothermal method. Successful 
application of modified graphite paste CoFe2O4/
rGO to determine ciprofloxacin in aquaculture 
wastewater. The signal of Cip on the modified 
electrode is 4.41 times higher than on the graphite 
paste electrode. The sensor provided satisfied 
LOD (0.094 µM) and LOQ (0.314 µM). The Cip 
concentration in aquaculture wastewater in Binh 
Dinh province, Vietnam was determined with 
good recovery (93.7–101.0%). 
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TÓM TẮT

Biến động của hàm lượng tetrodotoxin (TTX) trong cua móng ngựa Carcinoscorpius rotundicauda được 
thu thập từ bờ biển Cần Giờ, Thành phố Hồ Chí Minh, Việt Nam từ tháng 5/2021 đến tháng 5/2022 theo mùa, trọng 
lượng cơ thể và giới tính được xác định bởi phương pháp sắc ký lỏng kết hợp khối phổ (LC-MS/MS). Dữ liệu cho 
thấy có sự thay đổi đáng kể về hàm lượng TTX theo tháng với độc tính TTX tối đa được xác định là 197,6 ± 134,5 
MU/g đối với các mẫu được thu thập vào tháng 5 năm 2021, trong khi C. rotundicauda được thu thập vào tháng 1 
năm 2021 chỉ đạt hàm lượng TTX trung bình 7,8 ± 8,4 MU/g. Điều thú vị là sự khác biệt về hàm lượng TTX ở các 
nhóm C. rotundicauda trọng lượng cơ thể khác nhau cũng có khác biệt về mặt thống kê, với độc tính TTX tối đa là 
230,3 ± 116,3 MU/g được xác định cho các mẫu vật có trọng lượng cơ thể lớn hơn 300g, trong khi mức TTX thấp 
nhất (9,8 ± 12,3 MU/g) được đo cho nhóm C. rotundicauda có trọng lượng cơ thể dưới 150g. Hơn nữa, có sự khác 
biệt đáng kể về hàm lượng TTX giữa các nhóm C. rotundicauda cái và đực, với độc tính TTX cao hơn đáng kể 
được xác định cho mẫu cua móng ngựa cái (123,9 ± 45,8 MU/g) so với C. rotundicauda đực (68,7 ± 45,8 MU/g). 
Đặc biệt, hàm lượng TTX trung bình trong các mẫu cua móng ngựa thu ở biển Cần Giờ đạt 96,3 ± 94,2 MU/g là 
khá cao, cho thấy chúng không an toàn cho con người sử dụng làm nguồn thức ăn. Tuy nhiên, cua móng ngựa từ 
vùng biển Cần Giờ, thành phố Hồ Chí Minh, Việt Nam là nguồn tiềm năng để phân lập và tinh sạch tetrodotoxin 
cho các ứng dụng khác nhau (ví dụ làm thuốc).

Từ khóa: Carcinoscorpius rotundicauda, Tetrodotoxin (TTX), LC-MS/MS.
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ABSTRACT

Liquid chromatography-mass spectrometry (LC-MS/MS) was used for measurement of the variation of 
tetrodotoxin (TTX) in a horseshoe crab Carcinoscorpius rotundicauda collected from Can Gio coast, Ho Chi Minh  
City, Vietnam from May 2021 to May 2022 over the seasons, body weight and gender. The data revealed that 
there was significant variation of TTXs level over the months with maximal TTXs toxicity determined of  
197.6 ± 134.5 MU/g for specimens collected in May 2021, whereas the C. rotundicauda collected in January 2021 
was found to yield minimum TTXs level of 7.8 ± 8.4 MU/g. Interestingly, the difference of TTXs level in different 
body-weight C. rotundicauda groups was also statistically significant, with maximal TTXs toxicity of 230.3 ± 
116.3 MU/g determined for specimens having body weight of greater than 300g, while the lowest level of TTXs 
(9.8 ± 12.3 MU/g) was assayed for C. rotundicauda group of body weight less than 150g. Moreover, there was a 
significant difference in TTXs levels among female and male C. rotundicauda groups, with notable higher TTXs 
toxicity determined for female specimens (123.9 ± 45.8 MU/g) than that of male C. rotundicauda (68.7 ± 45.8 
MU/g). In particular, the average level of TTXs of 96.3 ± 94.2 MU/g measured in all studied crabs indicated that 
they are unsafe for human consumption. Fortunately, horseshoe crab collected from Can Gio coast, Ho Chi Minh 
City, Vietnam is a promising source for isolation and purification of tetrodotoxin for other applications (e.g., drug).  

Keywords: Carcinoscorpius rotundicauda, Tetrodotoxin (TTX), LC-MS/MS.

*Corresponding author. 
Email: tdangthuan@ich.vast.vn 

1. INTRODUCTION

Among four horseshoe crab species often found 
in Asia region,1,2 Cacinoscopius rotundicauda is 
reported as poisonous, and intoxication due to 
its intake. Previous studies have been reported 
that C. rotundicauda generally contains majority 
of tetrodotoxin (TTX) and minor amount of 
paralytic poisoning (PSP) toxins.1-3 These toxins 
have caused widespread of food poisoning 

due to consumption of horseshoe crabs in 
Thailand,4-8 Malaysia,9 China,10,11 and Vietnam.1 
It was evaluated that the mortality caused by 
consumption of C. rotundicauda in Thailand was 
about 1.75%, which was considerable high.12 
Consequently, identification and determination 
of toxin and toxicity in C. rotundicauda in Asian 
countries is critically important for examining 
potential hazard of this creature when they are 
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often consumed as one of seafood. Although 
several studies have been carried out to 
determine toxin and toxicity of C. rotundicauda 
collected from China, Thailand, Cambodia, 
Malaysia and Vietnam, these studies were case-
by-case investigation with specimens collected 
in one time only. Remarkably, it has generally 
stated that Thai people can be poisoned by C. 
rotundicauda at certain seasons of the year, with 
peaked number of poisoning cases between 
December and March.6,7 However, the authors 
did not determine variation of toxins and toxicity 
of C. rotundicauda collected over the months of 
year. Moreover, Ngy et al.13 only investigated 
variation of TTXs in C. rotundicauda collected 
from Cambodia within two successive months 
during rainy (April-May) and dry (December-
January) season. In mouse-based experiments, 
Liao and Li  summarized that the toxicity of 
adult horseshoe crabs was much higher than 
that of young group without quantification 
of toxin and toxicity. Furthermore, majority 
of studies discussed that toxicity dominantly 
accumulated in eggs of female horseshoe 
crabs.3,13,14 Nevertheless, statistical evaluation of 
the variation of toxin and toxicity levels in C. 
rotundicauda collected over different collection 
times, body weight and gender was not reported 
in the literature. 

In this work, C. rotundicauda collected 
from Can Gio coast, Ho Chi Minh city, Vietnam 
from May 2021 to March 2022 with the total 
of six collections (60 specimens) analyzed for 
examining the variation of toxicity and toxin 
over seasonal variation climate in Vietnam. 
Extensively, the sixty specimens were divided 
into five groups based on body weight of 
C. rotundicauda and two groups of male C. 
rotundicauda and female C. rotundicauda for 
statistical analysis of toxin composition and 
toxicity level. The data obtained in this work will 
alert Vietnamese citizens about potential hazards 
when using C. rotundicauda as a seafood. 
More importantly, the results reported in this 

study will point out that C. rotundicauda is a 
promising source for isolation and purification 
of tetrodotoxin which is currently applied as a 
bioactive compound for drug formulation (e.g., 
cancer treatment, pain treatment, etc.).

2. MATERIALS AND METHODS

2.1. Chemicals

Tetrodotoxin (TTX, 4-epiTTX, Anh-TTX), 
formic acid and acetic were obtained from 
Wako pure chemicals (Osaka, Japan). Saxitoxin 
(C1/2, GTX1-5, dcGTX2/3, NEO, dcSTX) was 
a gift from Dr. Oshima, Tohoku University, 
Japan. Ammonium hydroxide 25% for liquid 
chromatography-mass spectrometry (LC-MS) 
was purchased from Sigma-Aldrich (Tokyo, 
Japan). Acetonitrile was purchased from Kanto 
Chemicals (Tokyo, Japan).

2.2. Specimen collection 

Horseshoe crabs C. rotundicauda were collected 
from Can Gio coast, Ho Chi Minh City, Vietnam 
from May 2021 to May 2022. The specimens 
were classified by referencing relevant 
literature.1,3 After transferred to the Laboratory of 
Technology of Bioactive Compounds, Institute 
of Chemistry, Vietnam Academy of Science and 
Technology, specimens were immediately frozen 
and kept frozen at −20°C for sample preparation 
and toxin extraction. 

2.3. Extraction and analyzing of tetrodotoxin 
and saxitoxins

Specimens were dissected to collect all soft 
tissues, which were then homogenized with 
acetic acid 1% (2:1 w/v). The homogenized 
samples were boiled for 5 min, followed 
by cooling down at room temperature and 
centrifugation at 9,000 rpm, 20 oC for 10 min to 
collect supernatant. The supernatant was treated 
using an ENVI-Carb SPE cartridge 250 mg/3 ml 
(Sigma Aldrich Japan, Tokyo, Japan), eluted 
by four-fold diluted acetonitrile (MeCN) with 
1% acetic acid. The TTXs-rich eluate was 
analyzed by a Hydrophilic interaction liquid 
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Chromatography-Mass spectrometer (HILIC/
MS-MS) coupled to a Shimadzu system triple-
quadrupole mass spectrometer (LCMS−8040; 
Shimadzu Corporation, Kyoto, Japan). The 
HILIC separation was performed using a Waters 
Xbrige (HILIC) Amide column (4.6 mm I.D ×150 
mm, 3.5 µm) at 60°C with 5 µl sample volume 
injected. Mobile phases were water/formic acid/
ammonium hydroxide (500:0.075:0.3 v/v/v) 
(A); acetonitrile/water/formic acid (700:300:0.1 
v/v/v) (B) with flow rate of 0.6 mL/min. 

The chromatographic conditions consist 
of initial conditions 100% B, held for 20 min, 
then a linear gradient 50:50 A and B within 15 
min, held for 9.90 min. Ion source parameters 
of MS spectrometer were as follows: Entrance 
Potential (EP): 10 V; Curtain gas (CUR): 30 psi;  
Ion Spray Voltage (IS): 4500 V; Source 
desolvation temperature (TEM): 250 ºC; Source 
ion block temperature: 400 °C; Desolvation gas 
flow: 1000 L/h, Nebulizer gas flow: 2L/min; 
Collision gas flow rate: 0.15 mL/min. Multiple 
reaction monitoring (MRM) was performed 
in positive electrospray ionization (ESI+). A 
minimum of two transitions were used for 
each TTX and STX analogues. For each target 
ion, an MRM ion channels were selected for 
specific product ions generated from the selected 
precursor ion.15 To confirm TTXs in the extract 
of horsecrabs, MS/MS spectra were obtained at  
-25 eV of collision energy with m/z 320.1 > 302.1 

for TTX and 4epi-TTX, m/z 302.0 > 284.1 for 
Anh- TTX in the 1st transition; and -40 eV with 
m/z 320.1 > 162.1 for TTX and 4epi-TTX, m/z 
302.0 > 162.0 for Anh-TTX in the 2nd transition. 
STXs were scanned in the same mode with 
mass ranging from m/z 50-m/z 350.16 Toxicities 
were calculated from HILIC-MS/MS data and 
expressed in mouse unit (MU/g) according to 
Nakamura and Yasumoto (1985),17 in which  
1 mg TTX corresponding to 4500 MU, 4-epiTTX 
to 710 MU and 4,9-anhydroTTX to 92 MU. One 
MU is the dose of toxin that will kill a 20 g male 
mouse (ddY) in 30 min.

2.4. Statistical analysis

Experiment was carried out in triplicate and data 
was reported as mean ± standard error (SE). 
Statistical analysis was done using one-way 
ANOVA followed by post hoc Tukey’s test and 
a p-value of < 0.05 was declared as significant. 
The statistical analysis was conducted using 
software package IBM SPSS statistics (SPSS 22, 
SPSS Inc., IBM, New York, USA).

3. RESULT AND DISCUSSION

3.1. Seasonal variation of tetrodotoxin 

Horseshoe crab specimens were all identified as 
Carcinoscorpius rotundicauda.1,3 The toxicities 
of all the specimens were calculated based on the 
specific toxicity of each toxin component and 
expressed in mouse units (MU) (Table 1).18 

Specimen 
No.

Body size Toxicity (MU/g)
Total toxicity 

(MU/g)

Weight 
(g)

Length 
(cm)

Width 
(cm)

4epi-TTX TTX Anh-TTX TTXs

May 2021

f1 300.1 34.1 18.3 11.7±0.13 56.2±2.72 49.8±2.73 117.6±5.09

f2 210.3 24.5 12.5 7.9±0.09 58.5±3.04 10.7±0.72 77.1±3.78

f3 305.2 33.0 18.0 18.9±1.21 304.1±9.23 4.8±0.11 327.8±13.36

f4 307.1 33.5 17.2 1.4±0.04 331.4±10.32 3.7±0.06 336.5±11.14

f5 319.4 35.2 19.5 17.4±1.04 424.1±12.27 39.1±1.33 480.6±19.34

Table 1. TTX toxicity (MU/g) of Carcinoscorpius rotundicauda specimens collected from Can Gio coast,  
Ho Chi Minh city, Vietnam in 2021 - 2022.
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Specimen 
No.

Body size Toxicity (MU/g)
Total toxicity 

(MU/g)

Weight 
(g)

Length 
(cm)

Width 
(cm)

4epi-TTX TTX Anh-TTX TTXs

m1 290.5 32.5 16.7 105.4±3.72 28.9±0.55 2.2±0.05 136.5±5.81

m2 230.1 29.5 12.5 68.6±2.88 41.3±1.17 4.0±0.62 113.9±9.63

m3 251.6 25.5 15.2 56.8±1.23 49.2±2.16 5.8±0.22 111.7±8.77

m4 261.2 24.5 18.5 6.9±0.03 109.1±5.22 12.5±0.72 128.5±7.82

m5 215.4 26.6 11.2 45.3±1.82 98.5±4.06 1.8±0.04 145.5±10.77

October 2021

f6 278.1 27.5 11.8 67.1±2.08 56.4±1.26 33.3±0.52 156.8±13.16

f7 311.2 34.5 17.5 40.0±1.13 39.8±2.67 42.0±1.88 121.8±10.66

f8 315.0 34.5 19.5 16.3±0.71 48.0±3.11 52.0±2.89 116.4±7.62

f9 227.1 28.5 15.2 27.0±1.52 39.5±0.97 47.0±2.89 113.5±7.25

f10 177.3 23.6 14.4 13.1±0.24 48.8±2.72 2.0±0.04 63.8±2.81

m6 195.5 25.5 16.6 7.1±0.11 40.9±1.22 28.0±2.90 76.0±3.78

m7 159.1 27.6 15.7 6.6±0.08 31.2±0.97 19.9±0.62 57.6±1.98

m8 197.6 28.0 12.0 17.0±1.26 47.7±3.10 10.7±0.47 75.5±3.38

m9 267.1 32.5 17.5 18.7±1.02 42.8±3.67 32.1±1.88 93.6±2.09

m10 295.3 33.5 18.5 28.9±1.08 40.2±1.89 21.6±0.71 90.6±4.78

November 2021 

f11 100.3 21.0 11.0 1.7±0.05 1.2±0.04 0.3±0.01 3.1±0.09

f12 210.1 29.0 13.0 5.6±0.17 86.8±2.60 1.2±0.05 93.6±3.81

f13 104.6 25.6 15.5 1.2±0.04 3.0±0.05 1.0±0.03 5.2±0.16

f14 182.0 26.6 12.1 7.6±0.23 2.0±0.06 0.1±0.01 9.7±0.29

f15 115.1 25.2 15.3 4.0±0.12 2.0±0.09 0.7±0.02 6.8±0.22

m11 250.3 29.5 15.4 51.3±2.54 37.0±1.13 11.1±0.33 99.4±2.78

m12 104.5 22.4 15.4 1.6±0.03 3.0±0.07 0.4±0.01 5.0±0.13

m13 259.2 30.6 17.5 12.8±0.37 22.7±0.68 1.2±0.04 36.7±1.12

m14 272.3 31.6 18.5 14.9±0.45 48.6±1.46 1.3±0.05 64.8±1.94

m15 165.1 23.5 14.3 9.4±0.28 35.9±1.08 29.6±0.78 75.0±2.56

January 2022

f16 104.0 25.0 11.0 0.0±0.00 0.0±0.00 2.1±0.06 2.1±0.02

f17 110.4 25.7 13.0 0.6±0.02 4.1±0.11 0.1±0.00 4.8±0.11

f18 109.2 26.1 15.4 2.1±0.06 2.9±0.08 0.1±0.00 5.1±0.15

f19 112.1 24.9 11.5 0.9±0.02 3.0±0.08 1.1±0.03 5.1±0.17

f20 168.3 22.5 11.0 15.7±0.42 11.7±0.32 3.6±0.10 31.0±0.04
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Specimen 
No.

Body size Toxicity (MU/g)
Total toxicity 

(MU/g)

Weight 
(g)

Length 
(cm)

Width 
(cm)

4epi-TTX TTX Anh-TTX TTXs

m16 101.1 25.2 12.1 0.9±0.02 2.3±0.06 1.0±0.03 4.2±0.11

m17 213.3 32.0 13.5 6.0±0.16 1.9±0.05 1.1±0.02 8.9±0.24

m18 109.5 23.0 10.0 1.0±0.03 3.2±0.09 0.1±0.00 4.3±0.12

m19 248.1 30.0 15.0 1.2±0.03 2.8±0.08 3.7±0.10 7.7±0.18

m20 210.2 29.0 13.0 1.5±0.04 2.3±0.06 1.3±0.04 5.1±0.21

February 2022 

f21 289.2 34.1 20.1 11.1±0.39 129.4±4.22 35.3±1.24 175.8±6.12

f22 399.1 31.7 17.5 0.0±0.0 87.1±3.05 30.8±1.08 117.9±4.13

f23 312.2 35.1 19.5 125.6±4.1 2.1±0.07 1.9±0.07 129.6±3.89

f24 156.3 27.2 17.3 15.5±0.54 11.7±0.41 2.0±0.03 29.1±1.07

f25 178.6 29.1 16.5 56.3±1.97 20.5±0.72 2.6±0.07 79.4±2.89

m21 135.5 27.4 17.1 6.0±0.21 31.1±1.09 2.2±0.02 39.3±1.39

m22 259.2 32.8 12.5 21.5±0.75 37.8±1.32 2.1±0.01 61.4±2.15

m23 176.6 31.5 17.5 9.4±0.33 33.7±1.18 10.7±0.13 53.8±1.88

m24 178.2 28.8 13.0 10.0±0.35 24.3±0.85 3.7±0.02 38.0±2.88

m25 145.5 29.1 12.2 0.6±0.02 31.5±1.10 0.3±0.01 32.4±1.43

March 2022 

f26 305.0 34.5 21.0 11.3±0.09 138.4±4.17 3.2±0.03 152.9±4.43

f27 298.3 31.0 18.8 5.7±0.23 117.0±3.39 8.1±0.17 130.8±3.71

f28 316.2 34.5 19.8 83.4±0.49 193.9±5.62 16.8±2.11 294.2±7.22

f29 308.1 32.7 18.5 15.0±1.63 243.6±7.05 18.2±0.71 276.8±8.89

f30 306.5 32.2 19.0 154.8±1.75 76.1±2.21 19.8±0.87 250.6±2.17

m26 318.6 35.0 19.5 56.3±0.16 91.3±2.65 10.8±0.24 158.4±4.59

m27 276.1 31.0 15.0 60.4±0.17 32.0±0.93 10.8±0.51 103.3±3.19

m28 204.0 33.3 15.0 5.6±0.75 40.4±1.17 3.2±0.06 49.2±1.42

m29 151.2 28.5 15.0 6.0±0.17 52.3±1.52 4.7±0.17 63.1±2.19

m30 256.4 29.6 14.0 60.5±2.78 49.9±1.45 10.9±0.26 121.3±1.89

MU: mouse unit; f: female; m: male

The data collected showed that ten 
specimens collected in May 2021 were toxic 
with toxicity varied from 77.1 to 480.6 MU/g. 
In October 2021, ten specimens accounting 
for 100% of C. rotundicauda specimens were 
toxic with TTXs toxicity ranging between 57.6 

and 156.8 MU/g. For specimens collected in 
November 2021, five out of ten specimens were 
determined for toxicity range of 31.1 – 99.4 
MU/g, indicating 50% of specimens were toxic. 
By January 2022, there were 90% non-toxic 
and 10% toxic specimens identified from ten 
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specimens collected with TTXs toxicity of 21 – 
31 MU/g. The specimens collected in February 
2022 were assayed and yielded ten out of ten, 
accounting for 100% of toxic specimens (29.1 – 
175.8 MU/g). The collection in March 2022 also 
resulted in 100% toxic specimens (49.2 – 294.2 
MU/g). In sum, the frequency of occurrence 
of toxic specimens is very high (46 out of 60 
specimens; 76.7%). The present data strongly 
suggest that the frequency of toxic specimens of 
C. rotundicauda in Vietnam is extremely high. 
This result was in line with the data reported by 
Dao et al. showing that 83% of C. rotundicauda 
specimens collected in Tan Hai village, Vung 
Tau province, Vietnam were toxic.1 The average 
toxicity determined for all specimens was 96.3 
± 94.2 MU/g, which is considerably higher than 
10 MU/g recommended as the safe consumption 
level of TTX in Japan.19

The maximal toxicity of specimens 
collected in May21, Oct21, Nov21, Jan22, Feb22 
and Mar22 were 480.6, 156.8, 99.4, 31.0, 175.8 
and 294.2 MU/g, respectively. These toxicity 
levels were about 2 – 28 fold-time higher 
than  17.0 MU/g reported for C. rotundicauda 
collected in China by Zheng et al.,3 2 – 30 fold-
time higher than 16 MU/g reported for Thailand 
C. rotundicauda,2 and 4 – 65 fold-time higher 
than 7.4 MU/g determined for Bangladeshi 
C. rotundicauda.14 However, the toxicity of 
Vietnamese C. rotundicauda collected from Can 
Gio coast were comparable among the toxicity 
level reported for Cambodia C. rotundicauda 
(315 MU/g).13

It was remarkably noted that 4epi-TTX, 
TTX and Anh-TTX were three major compounds 
identified in the specimen’s extract (Figure 1) 
without detection of STXs (Figure 2), making 
100% of the total toxicity contributed by TTXs. 
Consistently, C. rotundicauda collected from 
Cambodia was assayed by LC/MS yielding TTX 
and its analogues of anhydro-TTX ([M+H]+ = 302) 
and deooxy-TTX ([M+H]+ = 304) with no PSPs 
were detected. Contrastingly, Zheng el al. (2019) 

reported that C. rotundicauda collected from 
China contained TTX, 11-oxoTTX, 4.9-anhydro-
11-oxoTTX, 4.9-anhydroTTX, 5-deoxyTTX, 
5.11-dideoxyTTX, 5.6.11-trideoxyTTX and 
4.9-anhydro-5.6.11- trideoxyTTX in which 
5-deoxy TTX in which 4.9-anhydro-11-oxoTTX 
were found as the major TTX analogues in all 
specimens. Furthermore, dcGTX2 and dcSTX 
were also determined with small amount in 
Chinese C. rotundicauda extract.3 Dao et al.  
examined C. rotundicauda collected from Tan 
Hai village, Vung Tau province, Vietnam and 
reported that all specimens contained 4epi-TTX, 
TTX, Anh-TTX and a certain amount of PSPs 
(e.g., neoSTX, dcSTX, STX, GTX4, GTX1, 
GTX3, GTX2, C1, C2) with their composition 
varied individually.

Figure 1. HPLC chromatograms of TTXs standards 
(A) and in an extract Carcinoscorpius rotundicauda 
specimens (B) collected from Can Gio coast, Ho Chi 
Minh city, Vietnam.

Figure 2. HPLC chromatograms of STXs standards 
(A) and in an extract Carcinoscorpius rotundicauda 
specimens (B) collected from Can Gio coast, Vietnam.
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Statistical analysis of variation of 4epi-TTX, 
TTX, Anh-TTX and TTXs of C. rotundicauda is 
illustrated in Figure 3A, Figure 3B, Figure 3C 
and Figure 3D, respectively. Sixty specimens were 
collected over the study period. For 4epi-TTX, the 
variation of its toxicity was significant over the 
months (ANOVA, F = 2.583, p = 0.036, n = 10, 
Figure 3A). Particularly, the maximal toxicity of 
4epi-TTX recorded for ten specimens collected 
in Mar22 and May21 were 45.9 ± 48.0 and 
34.0 ± 34.0 MU/g, respectively, which were 
significantly higher than those determined of 
11.1 ± 14.9 MU/g in Nov21 (p = 0.039) and  
3.0 ± 4.8 MU/g in Jan22 (p = 0.013). Pair 
comparisons also revealed that 4epi-TTX toxicity 
determined for specimens collected in Oct21 of 
24.2 ± 18.2 MU/g was significantly higher than 
3.0 MU/g determined for specimens in Jan22. 
However, there was no statistically significant 
difference of 4epi-TTX toxicity of specimens 
collected in Mar22 and May21 (p = 0.512),  
Mar22 and Feb22 (p = 0.151), Mar22 and 
Oct21 (0.271), May21 and Feb22 (p = 0.649), 
May21 and Oct21 (p = 0.518), Feb22 and Oct21  
(p = 0.926), Feb22 and Nov22 (p = 0.339), 
Feb22 and Jan22 (p = 0.088), Oct21 and Nov21 
(p = 0.164) and Nov21 and Jan22 (p = 0.164).

TTX toxicity for specimens collected in 
May21, Oct21, Nov21, Jan22, Feb22 and Mar22 
were 150.1 ± 145, 43.4 ± 6.9, 24.2 ± 28.3,  
3.4 ± 3.1, 40.9 ± 38.4, and 103.5 ± 70.5 MU/g, 
respectively, indicating greater variation among 
the months (ANOVA, F = 6.392, p = 9.9×10–5, 
n = 10, Figure 3B). Among these pairs, TTX 
toxicity measured for specimens collected 
in May21 and Oct21 (p = 0.044), May21 and 
Feb22 (p = 0.04), May21 and Nov21 (p = 0.035), 
May21 and Jan22 (p = 0.010), Mar22 and Oct22  
(p = 0.023), Mar22 and Feb22 (p = 0.039), 
Mar22 and Nov21 (p = 0.014), Mar22 and Jan22 
(p = 0.002), Oct21 and Jan22 (p = 0.000), Feb22 
and Jan22 (p = 0.015) and Nov21 and Jan22  
(p = 0.048) were significantly statistical difference. 

The remaining pairs including May21 and Mar21 
(p = 0.0266), Oct21 and Feb22 (p = 0.826), Oct21 
and Nov21 (p = 0.080) and Feb22 and Jan22  
(p = 0.243) were identified as no statistical 
difference in TTX toxicity (Figure 3B). Anh-
TTX toxicity was also varied significantly over 
the months (ANOVA, F = 6.647, p = 6.88×10–5, 
n = 10, Figure 3C) with maximum and minimum 
levels of 28.9 ± 15.8 and 1.4 ± 1.3 MU/g 
determined for specimens collected in Oct21 and 
Jan22, respectively. The specimens collected in 
May21, Nov21 Feb22 and Mar22 yielded Anh-
TTX toxicity of 13.4 ± 16.9, 4.7 ± 9.3, 9.2 ± 12.9 
and 10.7 ± 6.1 MU/g, respectively. Statistical 
analysis of Anh-TTX toxicity revealed that the 
pairs e.g., Oct21 and Mar22 (p = 0.007), Oct21 
and Feb22 (p = 0.008), Oct 21 and Nov21  
(p = 0.004), Oct21 and Jan22 (p = 0.000), 
May21 and Jan22 (p = 0.043) and Mar22 and 
Jan22 (p = 0.001) were significantly different. 
Overall, TTXs toxicity of C. rotundicauda 
collected over the studied months displayed 
a considerable variation (ANOVA, F = 10.1,  
p = 7.28×10–7, Figure 3D). The mean TTXs 
toxicity of specimens collected in May21, 
Oct21, Nov21, Jan21, Feb21 and Mar21 were 
197.6 ± 134.5, 96.6 ± 30.6, 39.9 ± 39.5, 7.8 ± 8.4, 
75.7 ± 49.7, 160.1 ± 86.4 MU/g, respectively. 
Typically, measurements of TTXs toxicity in 
May21 and Oct21 (p = 0.021), May21 and Feb22 
(p = 0.026), May21 and Nov21 (p = 0.012), May 
21 and Jan22 (p = 0.001), Mar22 and Oct 22  
(p = 0.042), Mar22 and Feb22 (p = 0.015), 
Mar22 and Nov21 (p = 0.007), Mar22 and Jan22  
(p = 0.000), Oct21 and Nov21 (p = 0.008), 
Oct21 and Jan22 (p = 0.000), Feb22 and Jan22 
(p = 0.002) and Nov21 and Jan22 (p = 0.042) 
were exhibited significant differences. Ngy et 
al.13 also reported that the toxicity level of TTXs 
in Cambodia were varied notably between dry 
(December – January) and rainy seasons (April – 
May) with generally higher TTXs level observed 
in rainy months.
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Since horseshoe crab mainly feeds 
on Mollusca, arthropoda and detritus.20 
Consequently, bacteria or other microorganism 
inhabiting the decayed organic mattes might 
be the primary origin of TTX.21 Therefore, the 
seasonal variation of TTXs in C. rotundicauda 
can be originated from TTX-bearing organisms 
which are consumed as their food through several 
steps of food web,22 due to seasonal and spatial 
variation in TTX-producing bacteria community 
in the aquatic environment.23 Among these food, 
TTX-producing bacteria such as Vibrio sp. was 
mentioned elsewhere.24 On the other hand, toxins 
in C. rotundicauda may originate directly from 
defense mechanism, in which C. rotundicauda 
use these toxins for their defense to fight with 
enemy in the environment.2 

3.2. Tetrodotoxin variation with body weight 
of C. rotundicauda

In this analysis, total sixty specimens were divided 
into five different groups. Each group contained 
12 specimens with body weight categorized 
between 100 and 150g (100W150), 150 and 
200g (150W200), 200 and 250g (200W250), 
250 and 300g (250W300) and heavier than 300g 
(300W). The data shown in Figure 4 indicates 
that TTX and its analogues are generally higher 
levels in C. rotundicauda having larger body 
weight. Particularly, the variation of toxicity 
of 4epi-TTX (ANOVA, F= 4.049, p = 0.006,  
n = 12, Figure 4A), TTX (ANOVA, F= 10.062, 
p = 3.4×10–6, n = 12, Figure 4B), Anh-TTX 
(ANOVA, F= 4.596, p = 0.003, n = 12, Figure 4C) 
and TTXs (ANOVA, F = 22.589, p = 4.47×10–11,  

Figure 3. Seasonal variation of 4epi-TTX (A), TTX (B), Anh-TTX (C) and TTXs (D) in Carcinoscorpius 
rotundicauda collected from Can Gio coast, Vietnam in 2021 - 2022. Data is expressed as mean ± SD (n = 10). a, 
c, e, f are denoted as significant (p < 0.05). 
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n = 12, Figure 4D) among C. rotundicauda 
groups of 100W150, 150W200, 200W250, 
250W300 and 300W are very significant. The 
maximal 4epi-TTX, TTX, Anh-TTX and TTXs 
toxicity were determined for 300W groups of 
46.0 ± 50.0, 162.4 ± 135.8, 21.9 ± 18.9 and 
230.3 ± 116.3 MU/g, respectively, whereas, 
the minimum levels of 4epi-TTX, TTX, Anh-
TTX and TTXs toxicity of 1.7 ± 1.7, 7.3 ± 11.3,  
0.8 ± 0.7 and 9.8 ± 12.3 MU/g, respectively, were 

quantified for 100W150 specimens. Toxicity of 
4epi-TTX, TTX, Anh-TTX and TTXs determined 
for 150W200, 200W250 and 250W300 groups 
were 14.5 – 33.9 (Figure 4A), 30.1 – 57.7 (Figure 4B),  
9.8 – 15.8 (Figure 4C) and 54.3 – 107.5 MU/g 
(Figure 4D), respectively. This interesting data 
resonate results obtained from moussed-based 
experiments conducted by Liao & Li who 
claimed that adult C. rotundicauda was more 
toxic than young C. rotundicauda.25

3.3. Tetrodotoxin variation with gender of C. 
rotundicauda

The total of sixty specimens were divided into 
two groups of thirty female and thirty male C. 
rotundicauda. The data shown in Figure 5A 
illustrates that the toxicity levels of 4epi-TTX 
determined for female and male specimens were 

Figure 4. Toxicity variation of 4epi-TTX (A), TTX (B), Anh-TTX (C) and TTXs (D) in five different body-weight 
groups of Carcinoscorpius rotundicauda collected from Can Gio coast, Vietnam in 2021 - 2022. Data is presented 
as mean ± SD (n = 12). a, b, e are denoted as significant (p < 0.05). 

24.6 ± 37.6 and 23.3 ± 26.8 MU/g, respectively, 
revealing the insignificant difference in variation 
of 4epi-TTX levels between two C. rotundicauda  
groups (ANOVA, F = 0.025, p = 0.873, n = 30, 
Figure 5A). Similarity, there was no significant 
difference of the Anh-TTX levels among female 
and male C. rotundicauda with respective 
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toxicities determined of 14.5 ± 17.6 and 8.3 ± 9.3 
MU/g (ANOVA, F = 2.870, p = 0.096, n = 30,  
Figure 5C). Contrastingly, there was a great 
variation of toxicity of TTX (ANOVA, F = 5.298,  
p = 0.025, n = 30, Figure 5B) and TTXs 
(ANOVA, F = 5.431, p = 0.023, n = 30, Figure 5D)  
among two groups of C. rotundicauda. 
Basically, female C. rotundicauda contained the 

significantly higher levels of TTX (84.8 ± 110.2 
MU/g) and TTX (123.9 ± 121.3 MU/g) than 
those in male C. rotundicauda (TTX, 37.1 ± 
26.6 MU/g; TTXs, 68.7 ± 45.8 MU/g). This data 
is attributed to eggs of female C. rotundicauda 
which generally contain high level of TTXs 
when compared to those of all soft tissue of male 
C. rotundicauda.3,13,14     

Overall, toxicity and toxin composition of 
C. rotundicauda are principally varied depending 
on regional and individual variations.1,3,13,14 
Moreover, results obtained in this study further 
demonstrated that toxicity and toxin composition 
of C. rotundicauda are also season, gender as 
well as age variation. Despite considerable 
variation in TTXs composition and toxicity in 
Vietnamese C. rotundicauda over the months, 
the majority of specimens were toxic with the 

Figure 5. Toxicity variation of 4epi-TTX (A), TTX (B), Anh-TTX (C) and TTXs (D) in two different Carcinoscorpius 
rotundicauda female and male groups collected from Can Gio coast, Vietnam in 2021 - 2022. Data is presented as 
mean ± SD (n = 30), a, b are denoted as significant (p < 0.05).

mean TTXs toxicity level of 96.3 ± 94.2 MU/g, 
suggesting that C. rotundicauda collected from 
Vietnam is not suitable for human consumption. 
Nevertheless, this is a promising source for 
isolation and purification of TTXs for research 
and development applications.

4. CONCLUSIONS

TTXs contributed 100% toxicity of C. rotundicauda 
collected from Can Gio coast, Ho Chi Minh City, 
Vietnam in May 2021 to March 2022. There were 
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significant variations of TTXs level over the 
months with maximal TTXs toxicity determined 
of 197.6 ± 134.5 MU/g for specimens collected 
in May 2021, whereas the C. rotundicauda 
collected in January 2021 was found to yield 
minimum TTXs level of 7.8 ± 8.4 MU/g. 
Interestingly, the difference of TTXs level in 
different body-weight C. rotundicauda groups 
was also statistically significant, with maximal 
TTXs toxicity of 230.3 ± 116.3 MU/g determined 
for specimens having body weight of greater 
than 300g, while the lowest level of TTXs  
(9.8 ± 12.3 MU/g) was assayed for C. rotundicauda 
group of body weight less than 150g. Moreover, 
there was a significant difference in TTXs levels 
among female and male C. rotundicauda groups, 
with notable higher TTXs toxicity determined 
for female specimens (123.9 ± 45.8 MU/g) than 
that of male C. rotundicauda (68.7 ± 45.8 MU/g). 
The data obtained in this study further confirmed 
that this is a promising source for isolation 
and purification of TTXs for research and 
development applications. 
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TÓM TẮT

Bài báo đề xuất mở rộng hai thuật toán ước lượng kênh LS dựa trên mô hình tín hiệu tensor cho các hệ thống 
MIMO được hỗ trợ bởi bề mặt phản xạ thông minh (IRS). Hai thuật toán này khai thác cấu trúc tensor của tín hiệu 
hoa tiêu để thiết lập bài toán ước lượng kênh ghép tầng. Thuật toán thứ nhất mở rộng ước lượng LS dựa trên việc 
khai thác cấu trúc Khatri-Rao Factorization (KRF) của kênh MIMO ghép tầng, bằng cách giải các bài toán con xấp 
xỉ ma trận hạng 1. Bài toán ước lượng thứ hai dựa trên thuật toán BALS (Bilinear Alternating Least Squares), đây 
là phiên bản đơn giản hóa của thuật toán TALS (Trilinear Alternating Least Squares). Ngoài ra, bài báo này cũng 
trình bày mối quan hệ giữa các tham số kênh MIMO để các thuật toán ước lượng trên có tính khả thi. Kết quả mô 
phỏng cho thấy các phương pháp ước lượng LS mở rộng dựa trên mô hình tín hiệu tensor đã cải thiện hiệu suất so 
với ước lượng LS truyền thống.

Từ khóa: Ước lượng kênh, bề mặt phản xạ thông minh, thuật toán dựa trên tensor, Khatri-Rao factorization.
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ABSTRACT 

This paper proposes to extend two Least Squares (LS) channel estimation algorithms based on tensor 
signal model to MIMO systems supported by Intelligent Reflective Surfaces (IRS). These two algorithms exploit 
the tensor structure of the pilot signal to establish the cascaded channel estimation problem. The first algorithm 
extends the LS estimation based on exploiting the Khatri-Rao Factorization (KRF) structure of the cascaded 
MIMO channel, by solving subproblems approximating the 1-rank matrix. The second estimator is based on the 
Bilinear Alternating Least Squares (BALS) algorithm, which is a simplified version of the Trilinear Alternating 
Least Squares (TALS) algorithm. In addition, this paper also presents the relationship between the MIMO channel 
parameters for the above estimation algorithms to be feasible. The simulation results show that the extended LS 
estimation methods based on the tensor signal model have improved performance compared with the conventional 
LS estimation.

Keyword: Channel estimation, intelligent reflecting surfaces, tensor-based algorithm, Khatri-Rao factorization. 
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1. INTRODUCTION  

Over the past decade, Multiple Input Multiple 
Output (MIMO) communication systems have 
been extensively studied and considered a key 
technology for enhanced mobile broadband 
communications in fifth generation networks 
(5G), the future beyond-5G (B5G) and sixth 
generation (6G). Several works have thoroughly 
investigated both theoretical and practical 
solutions on spectral efficiency analysis, data 
rate increase, reliability improvement and 
interference reduction, etc.1-4 MIMO systems 
can be classified into different types, such as 
Single-User MIMO (SU-MIMO), Multi-User 

MIMO (MU-MIMO), massive MIMO and 
millimeter wave MIMO, depending on the 
number of user, the number of antennas and the 
operating frequency bands. MIMO systems can 
be applied in wireless communication systems, 
such as cellular networks, wireless Local Area 
Networks (WLANs), vehicle networks, satellite 
communications, and radar systems. Some 
trends in the application of MIMO systems 
include: Internet of Things (IoT) device systems, 
MIMO for Unmanned Aerial Vehicles (UAVs) 
and MIMO for cognitive radio networks.

The above mentioned advantages of 
MIMO systems are achieved by the outstanding 
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characteristic of channel hardening, i.e. the 
characteristic of user channels that do not 
fading over time and the favorable propagation 
over  multipath channel. However, for MIMO 
systems, including massive MIMO, there is 
an open problem to ensure the performance of 
users in service dead zones, for example, indoor 
users with thick walls between them and the 
Base Station (BS) or outdoor users surrounded 
by many tall buildings, where gain is difficult to 
compensate for severe channel loss.

In the last few years, a number of studies 
have discussed the potentials and challenges of 
wireless communications assisted  by Intelligent 
Reflective Surfaces (IRS).5-7 Much research has 
been done on both the theory and implementation 
of IRS application in MIMO communication 
systems to maintain performance and increase 
user coverage in service dead zones. With 
the assistance of the IRS, MIMO systems 
can suppress Co-Channel Interference (CCI) 
when the user is at the edge of the cell,8,9 or to 
improve physical layer security.10,11 Besides, 
IRS can be used for information and power 
transfer in a IoT networks.8 IRS also known 
as reconfigurable smart surface or software 
controlled hypersurface consisting of a 2D 
array with a large number of passive or semi-
passive elements can control the electromagnetic 
characteristics of radio frequency waves so 
that the reflected signal adds coherently at the 
receiver or cancels it out to reduce CCI.5-9  Each 
element can operate independently and can be 
reconfigured in a software-defined manner using 
an external controller. The IRS does not require 
dedicated Radio Frequency (RF) strings and is 
powered wirelessly by an external RF source. 
This is in contrast to relay systems that need 
amplify-and-forward or decode-and-forward, 
and require specialized power sources.6

In MIMO systems, the availability of 
Channel State Information (CSI)  is a topic 
of intense research. Accurate and timely CSI 

knowledge plays an important role in wireless 
communication systems. For IRS-assisted 
MIMO systems, there are often a large number 
of IRS elements, which poses a significant 
challenge to solving the channel estimation 
problem in collecting CSI. In these systems, 
there are two basic methods for performing 
channel estimation. First, use the IRS with a 
semi-passive structure in which several active 
elements connected to receive the RF string. In 
this case, the parts that actively perform baseband 
processing at the IRS facilitate the collection  
of  CSI.12

In the second method, the IRS has a 
full passive structure, where the IRS works by 
reflecting the impinging  waves according  some 
phase shift pattern. This is a more difficult case, 
where at the receiver based on the pilot signals 
sent by the transmitter and reflected by the IRS 
performs a cascade estimation between the 
transmitter to the IRS and the IRS to the receiver. 
In this case, the IRS uses a phase shift model in 
which the training phases play an important role. 
This is the method used in this paper.

A number of published works refer to 
different solutions to the channel estimation 
problem for the case of passive IRS. T. L. Jensen 
et al. have proposed an unbiased estimation 
method with minimal variance and an optimal 
calculation of the IRS phase shift matrix, in 
which the IRS elements are completely passive.13 
The authors in the reference,14 propose a two-
stage algorithm by exploiting the sparse code 
characteristics of multipath channels with low 
rank channel matrices. The cooperative channel 
estimation through the training beam of IRS-
assisted massive MIMO systems on the terahertz 
channel is presented15. IRS was proposed as a 
solution to reduce the congestion problem and 
also presented the method of channel estimation 
on millimeter wave channel.16 The IRS-assisted 
MIMO system is considered and channel 
estimation is performed by the two-stage 
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method and the IRS-supported transmission 
route is estimated by the approximate message 
transmission method.17 In the study,18 established 
the channel estimation based on sparse matrix 
factorization of the Internet of Things (IoT) 
system supported by the IRS. The latest research 
works,19-21 successfully applied tensor models in 
many signal processing problems, especially for 
wireless communication systems. Semi-blind 
channel estimation methods for MIMO systems 
have also considered,22,23 channel estimation 
methods for cooperative communication,24,25 and 
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signals in time domain.28
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between the base station transmitter to the 
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The contributions of this article are 
summarized as follows.

• Using tensor model to set up two LS 
channel estimation algorithms based on Khatri-
Rao Factorization (KRF) and the Bilinear 
Alternating Least Squares (BALS). 

• Consider the relationship between the 
IRS-assisted MIMO system parameters for the 
estimated matrix rank to make the problems 
feasible.

Notation and operator: Matrices are 
represented with boldface capital letters (A; B;…), 
and vectors are denoted by boldface lowercase 
letters (a; b;…). Tensors are symbolized by 
calligraphic letters. Transpose and pseudo-inverse 
of a matrix A are denoted as AT and A†. 

F
A

denote the Frobenius norm of A. The operator 
diag(a) forms a diagonal matrix out of its  
vector argument, while                      denote the 
conjugate, outer product, Khatri Rao, Hadamard 
and Kronecker products, respectively. IN 
denotes the N × N identity matrix. The operator 
vec(·) vectorizes an I×J matrix argument, 
while unvecI×J(·) does the opposite operation. 
Moreover, vecd(·) forms a vector out of the 
diagonal of  its matrix argument. The n-mode 
product between a tensor                      and a matrix                   
                 is denoted nϒ× A , for 1 ≤  n ≤ N.  The 
operator Di(A) forms a diagonal matrix from the 
i-th row of its matrix argument A. Moreover, Ai 
denotes the i-th row of the matrix A. 

2. SIGNAL MODEL AND SYSTEM

In this article review the MIMO communication 
systems assisted by an IRS. The transmitter 
side is a Base Station (BS) equipped with an 
array of MB antennas and the receiver side is 
a User Terminal (UT) with MU antennas. The 
IRS consists of L passive elements, capable 
of individually adjusting their reflectances 
(i.e. phase shift control). The system model is 
illustrated in Figure 1. 
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Tj j L
t L tt s e s e     s is the vector that 

models the phase shifts and activation pattern of 
the IRS, where (0,2 ]n  is phase shift and 

 , 0,1n ts  is the magnitude that controls the on-
off state of the IRS elements at time t, respectively. 

S S BL MB IR  H is the MIMO channel matrix 
from base station BS to IRS and  UM LIRS UT  G
denote the MIMO channel between the IRS and the 
user terminal UT, và 1[ ] UMt n is the Additive 
White Gaussian Noise (AWGN) vector.  

The training signal is modeled as shown in Figure 
2. The training signal length Ts is divided into Q
blocks, where each block is called a time slot of 

length T, i.e. Ts = QT. In expression (2), 
[ , ] [( -1) ]q t y q T ty as the received signal at the 

t-th time slot of the q-th block, t = 1,…, T, q = 1, 
…, Q. Suppose, the time slot transmission, IRS 
adjusts its phase shifts as a function of time            
t = 1, ..., T and a block-fading channel, which 
means that the BS-IRS and IRS-UT channels are 
constant during T time slots.  

Figure 2. The time frame structure of the pilot signal 
pattern. 

According to the signal frame structure in Figure 2, 
the IRS phase shift vector  [1],..., [ ]Qs s is 
constant during the T time slots of the q-th block 
and varies from block to block and the pilot signals 
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pattern.

According to the signal frame structure 
in Figure 2, the IRS phase shift vector 
{ }[1],..., [ ]Qs s  is constant during the T time 
slots of the q-th block and varies from block 
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are repeated over the Q blocks. Mathematical 
representation in,14
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Accordingly, the signal in expression (2) is 
rewritten as 
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All signals received in the time slot T of the 
qth block, represented by the vector, 

 [ ] [ ,1]... [ , ] UM Tq q q T  Y y y C so we can 
perform,14 

         [ ] diag( [ ]) [ ],IRS UT BS IRS Tq q q  Y G s H X N      (6)  

where,  [1],..., [ ] ,B
T T MT X x x  and           

 [1],..., [ ] .UM TT N n n  
3. LEAST SQUARES (LS) CHANNEL 
ESTIMATION WITH TENSOR SIGNAL 
MODELING  

Least Squares (LS) channel estimation is the most 
commonly used basic linear estimation method for 
channel estimation. LS channel estimation 
performs the minimum squared distance between 
the received signal and the transmitted signal.  

To derive the LS estimate in the case in question, 
apply the property    vec vec( )T

ABC C A B  and 
transform the expressions from (1) to (6), we have: 
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where, 

[ ] vec( [ ]) ,UM Tq q y Y  
[ ] vec( [ ]) UM Tq q n N and we have used 

property         A B C D AC BD .28,29  

Defining  [1]... [ ] UM T QQ Y y y  and
( ) ,U B U

U

TM M M
M

 X X I  we have 

       -( ) ,BS IRS T IRS UT T
 Y X H G S N        (8) 

where,  [1],..., [ ] ,T Q LQ S s s  and UM T QN is 
the noise matrix set up in the same way as Y. 
Finally, defined  vec ,UM TQy Y   and apply 

the property      Tvec vec ABC C A B  to 
expression (8), we have 

      vec ( )BS IRS T
  IRS-UTy S X H G n   (9) 

or simply write in , y Uθ n            (10) 

where, ,U B UQTM LM M U S X  and 

 vec ( ) B UM M LBS IRS T
 IRS-UTθ H G  is the 

composite  channel parameter, combining the BS-
IRS and IRS-UT channels. Estimating the LS 
channel applied to the composite channel in our 
case is the minimum of the problem,6  

            
2ˆ ,arg min

θ
θ y -Uθ        (11) 

the solution (11) results found † .θ U y  Applying 
the Kronecker product of U, this solution can be 
simply rewritten † †( ) . θ S X y  

In the conventional LS estimation problems just 
presented, the composite channel linear parameter 
vector θ does not use the Katri-Rao structure. This 
is unfortunate, because the signal expression (6), or 
its equivalent (8) can be written as a parallel factor 
(PARAFAC) tensor model. The application of 
tensor model allows to improve the accuracy of 
channel estimation compared to traditional LS 
methods. This can compute a separate estimate for 
the HBS-IRS và GIRS-UT channels instead of the 
composite channel estimate θ. 

To simplify the signal modeling by tensor 
operation, we first ignore the noise component in 
expression (6), leaving only the signal component, 
so we can rewrite as 

 [ ] ( ) , ,
TIRS UT T BS IRS T L

qq    P G D S Z Z X H   
                                                     (12) 

where, ( ) diag( [ ])q qD S s  denotes diagonal matrix 
of  the q-th row of the IRS phase shift matrix S on 
its main diagonal. The matrix [ ]qP  can be viewed 
as the q-th front matrix slice of the 3-dimensional 
tensor UM T Q  according to the PARAFAC 
decomposition. This operation is also the 
Canonical Polyadic Decomposition (CPD). Each 
(m, t, q)-th element of the received signal tensor, 
regardless of noise, is written in,28-31 

               
, , , , ,

1
,

L

m t q m n t n q n
n

p g z s


               (13) 

where, , , , , , ,[ ] , [ ] , [ ] .IRS UT
l n m n t n t n q n q ng z sG Z S  

The abbreviation for PARAFAC decomposition 
(13) is written as , , .IRS UT      G Z S  Using n-

mode product notation, the PARAFAC 
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of the zero-noise received signal tensor can be 
represented by,28,29

Exploiting the linear triple of the 
PARAFAC decomposition, we can expand the 
received signal tensor ϒ  in the form of three 
matrices as follows,28,29 

Next, the algebraic structure of the 
PARAFAC (13) model is exploited to establish 
two methods of channel estimation. The 
PARAFAC model is very usable thanks to 
its essential factor identification uniqueness 
property, which is derived from the concept of 
Kruskal rank (k-rank). 

4.  PROPOSAL TO EXTEND LS CHANNEL 
ESTIMATION UNDER TENSOR SIGNAL 
MODEL

In this section, we extend the estimating  HBS-

IRS and và GIRS-UT channel matrices from the 
Tensor signal modeling is presented as shown 
in (13). First, we define,               as the  
noise-corrupted received signal tensor, where                            
             is the additive noise tensor.  
Similarly,                                   are the 1-mode, 
2-mode, and 3-mode  extended matrix noise 
versions respectively in the tensor expressions 
of the received signal (15-17), và Ni=1,2,3 
corresponds to the extended matrices of the 
noise tensor.

In this study, the pilot signal matrix X 
calculated using semi-unitary matrices satisfying 
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IRS S is SHS = QIL. A best option for computing 
X and S matrices is to use truncated Discrete 
Fourier transform (DFT) matrices. 

4.1. LS channel estimation based on Khatri-
Rao Factorization

We can first rewrite the noise expansion matrix 
(17) as
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Applying a bilinear filter on the time 
domain at the receiver by exploiting the 
knowledge of the IRS matrix and the pilot signal 
matrix, as follows 

                                                            

the Khatri-Rao structured noise version of the 
virtual MIMO channel in an IRS-assisted MIMO 
systems. Based on the semi-unitary structure of 
the S and X matrices, the correlation properties 
of the additive noise are not affected by the 
bilinear filter step.

From expression (19), we deduce the 
estimation of the HBS-IRS and GIRS-UT matrices 
by the Khatri-Rao least squares approximation 
problem,

    
     

The efficiency of this problem is thanks 
to the application of the KRF (Khatri-Rao  
factorization) algorithm. Expression (20) can 
be understood as finding the HBS-IRS and GIRS-UT 
matrix estimators to minimize the set rank 1 
matrix approximations, 28,32,33 
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where, 
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component after filtering. Chú ý, B UM M LΩ  is 
the Khatri-Rao structured noise version of the 
virtual MIMO channel in an IRS-assisted MIMO 
systems. Based on the semi-unitary structure of the 
S and X matrices, the correlation properties of the 
additive noise are not affected by the bilinear filter 
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From expression (19), we deduce the estimation of 
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nh C are the n-th column of  GIRS-UT matrix, 
and n-th row of  HBS-IRS matrix, respectively.  The 
estimates of gn and hn in (21) can be obtained from 
the left and right dominant singular vectors ,nΩ  
respectively, with 1 ≤ n ≤ L, respectively. Thus, the 
estimation problem under consideration is 
transformed into L approximation submatrix 
problems of rank 1. Once we find ˆ BS IRSH  and 
ˆ IRS UTG  from (21), we can set up a composite 

channel θ.  

4.2  BALS channel estimation  

From the noise versions of the expansion matrix in 
expressions (15) and (16), we can derive an 
iterative solution based on the Bilinear Alternating 
Least Squares algorithm. This algorithm is a 
simplified version of the Trilinear Alternating 
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4.2. BALS channel estimation 

From the noise versions of the expansion matrix 
in expressions (15) and (16), we can derive 
an iterative solution based on the Bilinear 
Alternating Least Squares algorithm. This 
algorithm is a simplified version of the Trilinear 
Alternating Least Squares algorithm for 
estimating the factor matrices of the PARAFAC 
model.34 In this case, since the matrix S is known 
at the receiver, the GIRS-UT and HBS-IRS matrices 
are estimated by the method of interleaving 
by optimizing in the iterative process of the 
following two cost functions,34

 

                                                             

The convergence is declared when  
                                                               

the the reconstruction erro calculated at the 
i-th iteration, δ a threshold parameter, and 

  
                                            

is the reconstructed 

PARAFAC model (c.f (6), (13)) from the estimated 
channel matrices                                        the end 
of the i-th iteration.  

If the matrices X and S have orthogonal 
columns (requires  Q ≥ L and T ≥ MU are 
required), the right pseudo-inverse in (24) and 
(25) can be repeated by matrix products. This 
results in a low complexity BALS algorithm 
with simple estimation steps.

The common feature of the two algorithms 
is that the cascaded channel estimation is 
achieved by separating the estimates of the 
two GIRS-UT and HBS-IRS channel matrices, which 
improves the performance compared to the 
direct estimation of the cascaded channel using 
the conventional least squares algorithm. By 
focusing on pilot-assisted channel estimation 
methods, we improve the algorithm in,39 to have 
a more comprehensive formulation of IRS-
assisted channel estimation methods. Based on 
the tensor model, thereby giving necessary notes 
useful for the design of training parameters.

4.3. Feasibility conditions of extended 
estimation algorithms

The KRF method with a bilinear filter step as in 
(19) requires an IRS phase shift matrix S and the 
pilot symbol matrix X have full column rank, 
subject to the following conditions:

       Q ≥ L and T ≥ MB         (26)

As mentioned earlier, it is best to choose 
the X and S matrices as semi-unitary (or column-
orthogonal) matrices. It is explained that instead 
of inverting the matrices in (19) we use semi-
unitary single matrix products to simplify 
processing at the receiver. In addition, the 
correlation properties of the noise component 
after filtering in (19) are preserved. 

The BALS method requires two Khatri-
Rao products                                                     and 

                           have  full column rank, 
such that (24) and (25) admit unique solutions. 
This means that the conditions QT ≥ L and       
QMU ≥ L must be satisfied. Combining these 
two inequalities results in min(QT, QMU) ≥ L, 
or equivalently, Qmin(T, MU) ≥ L. Also notice 
that the condition T ≥ MB in (23) is required, 
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Least Squares algorithm for estimating the factor 
matrices of the PARAFAC model.34 In this case, 
since the matrix S is known at the receiver, the 
GIRS-UT and HBS-IRS matrices are estimated by the 
method of interleaving by optimizing in the 
iterative process of the following two cost 
functions,34 
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the end of the i-th iteration.   

If the matrices X and S have orthogonal columns 
(requires  Q ≥ L and T ≥ MU are required), the right 
pseudo-inverse in (24) and (25) can be repeated by 
matrix products. This results in a low complexity 
BALS algorithm with simple estimation steps. 

The common feature of the two algorithms is that 
the cascaded channel estimation is achieved by 
separating the estimates of the two GIRS-UT and HBS-

IRS channel matrices, which improves the 
performance compared to the direct estimation of 
the cascaded channel using the conventional least 
squares algorithm. By focusing on pilot-assisted 
channel estimation methods, we improve the 
algorithm in,39 to have a more comprehensive 
formulation of IRS-assisted channel estimation 
methods. Based on the tensor model, thereby 
giving necessary notes useful for the design of 
training parameters. 

4.3. Feasibility conditions of extended 
estimation algorithms 

The KRF method with a bilinear filter step as in 
(19) requires an IRS phase shift matrix S and the 

pilot symbol matrix X have full column rank, 
subject to the following conditions: 

                     Q ≥ L và T ≥ MB         (26) 

As mentioned earlier, it is best to choose the X and 
S matrices as semi-unitary (or column-orthogonal) 
matrices. It is explained that instead of inverting 
the matrices in (19) we use semi-unitary single 
matrix products to simplify processing at the 
receiver. In addition, the correlation properties of 
the noise component after filtering in (19) are 
preserved.  

The BALS method requires two Khatri-Rao 

products 1

TBS IRS QT LΛ S X H  and 

2
UQM LIRS UTΛ S G  have  full column rank, 

such that (24) and (25) admit unique solutions. 
This means that the conditions QT ≥ L and       
QMU ≥ L must be satisfied. Combining these two 
inequalities results in min(QT, QMU) ≥ L, or 
equivalently, Qmin(T, MU) ≥ L. Also notice that 
the condition T ≥ MB in (23) is required, since X 
must have the full column rank to be left inverse. 
Therefore, the following conditions are necessary 

     Qmin(T,  MU) ≥ L  và T ≥ MB.         (27) 

Comparing conditions (26) and (27), we can see 
that the BALS estimation method has less 
constraints on the minimum number of time blocks 
Q for the training channel than the KRF method. In 
the special case MU = 1 (MISO or SISO systems, 
respectively), the inequalities (26) and (27) equal 
signs occur, meaning that BALS and KRF are 
subject to the same training requirements. 
Obviously BALS algorithm has advantages over 
KRF when applied in MIMO system, because 
BALS can work with Q < L, while KRF requires  
Q ≥ L. Note that, if Q = 1, KRF estimation method 
is equivalent to conventional LS estimator. 
However, in this case we cannot solve/separate  the 
estimation problem of two channel matrices 
through solving problem (20). On the other hand, 
the KRF algorithm has lower computational 
complexity than BALS, which will be presented 
later in the results section and discussed in the 
following section. 

In addition, it should be noted that (27) is a 
necessary but not guaranteed condition for the 
uniqueness of BALS estimates. The sufficient 
condition can be derived from the rank 
characteristics of the matrices 

TBS IRS QT LS X H  
and .UQM LIRS UTS G  

To ensure the uniqueness of the channel estimates 
in solving problems (22) and (23) for matrices in 
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giving necessary notes useful for the design of 
training parameters. 

4.3. Feasibility conditions of extended 
estimation algorithms 

The KRF method with a bilinear filter step as in 
(19) requires an IRS phase shift matrix S and the 

pilot symbol matrix X have full column rank, 
subject to the following conditions: 

                     Q ≥ L và T ≥ MB         (26) 

As mentioned earlier, it is best to choose the X and 
S matrices as semi-unitary (or column-orthogonal) 
matrices. It is explained that instead of inverting 
the matrices in (19) we use semi-unitary single 
matrix products to simplify processing at the 
receiver. In addition, the correlation properties of 
the noise component after filtering in (19) are 
preserved.  

The BALS method requires two Khatri-Rao 

products 1

TBS IRS QT LΛ S X H  and 

2
UQM LIRS UTΛ S G  have  full column rank, 

such that (24) and (25) admit unique solutions. 
This means that the conditions QT ≥ L and       
QMU ≥ L must be satisfied. Combining these two 
inequalities results in min(QT, QMU) ≥ L, or 
equivalently, Qmin(T, MU) ≥ L. Also notice that 
the condition T ≥ MB in (23) is required, since X 
must have the full column rank to be left inverse. 
Therefore, the following conditions are necessary 

     Qmin(T,  MU) ≥ L  và T ≥ MB.         (27) 

Comparing conditions (26) and (27), we can see 
that the BALS estimation method has less 
constraints on the minimum number of time blocks 
Q for the training channel than the KRF method. In 
the special case MU = 1 (MISO or SISO systems, 
respectively), the inequalities (26) and (27) equal 
signs occur, meaning that BALS and KRF are 
subject to the same training requirements. 
Obviously BALS algorithm has advantages over 
KRF when applied in MIMO system, because 
BALS can work with Q < L, while KRF requires  
Q ≥ L. Note that, if Q = 1, KRF estimation method 
is equivalent to conventional LS estimator. 
However, in this case we cannot solve/separate  the 
estimation problem of two channel matrices 
through solving problem (20). On the other hand, 
the KRF algorithm has lower computational 
complexity than BALS, which will be presented 
later in the results section and discussed in the 
following section. 

In addition, it should be noted that (27) is a 
necessary but not guaranteed condition for the 
uniqueness of BALS estimates. The sufficient 
condition can be derived from the rank 
characteristics of the matrices 

TBS IRS QT LS X H  
and .UQM LIRS UTS G  

To ensure the uniqueness of the channel estimates 
in solving problems (22) and (23) for matrices in 
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since X must have the full column rank to be left 
inverse. Therefore, the following conditions are 
necessary

     Qmin(T,  MU) ≥ L  và T ≥ MB.         (27)

Comparing conditions (26) and (27), we 
can see that the BALS estimation method has 
less constraints on the minimum number of time 
blocks Q for the training channel than the KRF 
method. In the special case MU = 1 (MISO or 
SISO systems, respectively), the inequalities 
(26) and (27) equal signs occur, meaning that 
BALS and KRF are subject to the same training 
requirements. Obviously BALS algorithm has 
advantages over KRF when applied in MIMO 
system, because BALS can work with Q < L, while 
KRF requires  Q ≥ L. Note that, if Q = 1, KRF 
estimation method is equivalent to conventional 
LS estimator. However, in this case we cannot 
solve/separate  the estimation problem of two 
channel matrices through solving problem (20). 
On the other hand, the KRF algorithm has lower 
computational complexity than BALS, which 
will be presented later in the results section and 
discussed in the following section.

In addition, it should be noted that (27) 
is a necessary but not guaranteed condition 
for the uniqueness of BALS estimates. The 
sufficient condition can be derived from 
the rank characteristics of the matrices 

  

To ensure the uniqueness of the channel 
estimates in solving problems (22) and (23) 
for matrices in Khatri-Rao form, applying the 
lemmas in,35,36 the result is

       

We are considering the channel training 
parameters, specifically calculating such that the 
IRS phase shift matrix S and the pilot symbols 
matrix X have full rank. These conditions are 
useful for system design when using the BALS 
estimation method.

4.3.1. Full rank of channel matrix HBS-IRS and   
GIRS-UT

Assuming that both HBS-IRS and GIRS-UT channel 
matrices have full rank (in case of Rayleigh 
fading channel), the condition (28)-(29) can be 
rewritten as

min(Q, L) + min(MB, L)  ≥ L + 1        (30)

min(Q, L) + min(MU, L)  ≥ L + 1        (31)

We can distinguish two cases as follows.

• L ≥ T ≥ MB and L ≥ MU: In this case, 
the base station BS and user equipment UT have 
small antenna array size, the number of BS and 
UT antennas is smaller than the number of IRS 
elements. Condition (28)-(29) becomes

         MB + min(Q, L) ≥ L + 1          (32)

          MU + min(Q, L) ≥ L + 1         (33)

• T ≥ MB ≥ L: In this case, the base station 
BS is assumed to be equipped with a large 
antenna array. The minimum number of BS 
antennas is equal to the number of IRS elements 
(massive MIMO system setup). Since condition 
(28) is always satisfied for all values of Q, the 
uniqueness of the channel estimate depends only 
on (29), that is

    min(Q, L) + min(MU, L) ≥ L + 1        (34)

Conditions (32) and (33) establish a 
trade-off between the time dimension (the 
number of IRS training blocks Q) and the two 
spatial dimensions (the number of transmitting 
antennas MB and the number of receiving 
antennas MU) for the case channel restore. 
For example, if Q < L, this condition implies  
MB + Q ≥ L + 1 and MU + Q ≥ L +1, which is 
equivalent to min(MB + Q, MU + Q) ≥ L + 1. 
That is, the number of transmitting (or receiving) 
antennas can be reduced while ensuring that 
the unique characteristic of the BALS channel 
estimation method is compensated by increasing 
the number of time blocks Q.

4.3.2. The HBS-IRS  and GIRS-UT channel matrices 
lack rank

In millimeter wave MIMO systems, a large 
number of transmit/receive antennas coupled 
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Least Squares algorithm for estimating the factor 
matrices of the PARAFAC model.34 In this case, 
since the matrix S is known at the receiver, the 
GIRS-UT and HBS-IRS matrices are estimated by the 
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iterative process of the following two cost 
functions,34 
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ˆ BS IRS
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If the matrices X and S have orthogonal columns 
(requires  Q ≥ L and T ≥ MU are required), the right 
pseudo-inverse in (24) and (25) can be repeated by 
matrix products. This results in a low complexity 
BALS algorithm with simple estimation steps. 
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the cascaded channel estimation is achieved by 
separating the estimates of the two GIRS-UT and HBS-

IRS channel matrices, which improves the 
performance compared to the direct estimation of 
the cascaded channel using the conventional least 
squares algorithm. By focusing on pilot-assisted 
channel estimation methods, we improve the 
algorithm in,39 to have a more comprehensive 
formulation of IRS-assisted channel estimation 
methods. Based on the tensor model, thereby 
giving necessary notes useful for the design of 
training parameters. 

4.3. Feasibility conditions of extended 
estimation algorithms 

The KRF method with a bilinear filter step as in 
(19) requires an IRS phase shift matrix S and the 

pilot symbol matrix X have full column rank, 
subject to the following conditions: 

                     Q ≥ L và T ≥ MB         (26) 

As mentioned earlier, it is best to choose the X and 
S matrices as semi-unitary (or column-orthogonal) 
matrices. It is explained that instead of inverting 
the matrices in (19) we use semi-unitary single 
matrix products to simplify processing at the 
receiver. In addition, the correlation properties of 
the noise component after filtering in (19) are 
preserved.  

The BALS method requires two Khatri-Rao 

products 1

TBS IRS QT LΛ S X H  and 

2
UQM LIRS UTΛ S G  have  full column rank, 

such that (24) and (25) admit unique solutions. 
This means that the conditions QT ≥ L and       
QMU ≥ L must be satisfied. Combining these two 
inequalities results in min(QT, QMU) ≥ L, or 
equivalently, Qmin(T, MU) ≥ L. Also notice that 
the condition T ≥ MB in (23) is required, since X 
must have the full column rank to be left inverse. 
Therefore, the following conditions are necessary 

     Qmin(T,  MU) ≥ L  và T ≥ MB.         (27) 

Comparing conditions (26) and (27), we can see 
that the BALS estimation method has less 
constraints on the minimum number of time blocks 
Q for the training channel than the KRF method. In 
the special case MU = 1 (MISO or SISO systems, 
respectively), the inequalities (26) and (27) equal 
signs occur, meaning that BALS and KRF are 
subject to the same training requirements. 
Obviously BALS algorithm has advantages over 
KRF when applied in MIMO system, because 
BALS can work with Q < L, while KRF requires  
Q ≥ L. Note that, if Q = 1, KRF estimation method 
is equivalent to conventional LS estimator. 
However, in this case we cannot solve/separate  the 
estimation problem of two channel matrices 
through solving problem (20). On the other hand, 
the KRF algorithm has lower computational 
complexity than BALS, which will be presented 
later in the results section and discussed in the 
following section. 

In addition, it should be noted that (27) is a 
necessary but not guaranteed condition for the 
uniqueness of BALS estimates. The sufficient 
condition can be derived from the rank 
characteristics of the matrices 

TBS IRS QT LS X H  
and .UQM LIRS UTS G  

To ensure the uniqueness of the channel estimates 
in solving problems (22) and (23) for matrices in 
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Khatri-Rao form, applying the lemmas in,35,36 the 
result is 

        
 rank( ) rank 1

TBS IRS L     
S X H        (28) 

         rank( ) rank( ) 1IRS UT L  S G           (29) 

We are considering the channel training 
parameters, specifically calculating such that the 
IRS phase shift matrix S and the pilot symbols 
matrix X have full rank. These conditions are 
useful for system design when using the BALS 
estimation method. 

4.3.1. Full rank of channel matrix HBS-IRS and   
GIRS-UT 

Assuming that both HBS-IRS and GIRS-UT channel 
matrices have full rank (in case of Rayleigh fading 
channel), the condition (28)-(29) can be rewritten 
as 

         min(Q, L) + min(MB, L)  ≥ L + 1        (30) 

         min(Q, L) + min(MU, L)  ≥ L + 1        (31) 

We can distinguish two cases as follows. 

 L ≥ T ≥ MB and L ≥ MU: In this case, the 
base station BS and user equipment UT have 
small antenna array size, the number of BS 
and UT antennas is smaller than the number 
of IRS elements. Condition (28)-(29) 
becomes 

         MB + min(Q, L) ≥ L + 1          (32) 

          MU + min(Q, L) ≥ L + 1         (33) 

 T ≥ MB ≥ L: In this case, the base station BS 
is assumed to be equipped with a large 
antenna array. The minimum number of BS 
antennas is equal to the number of IRS 
elements (massive MIMO system setup). 
Since condition (28) is always satisfied for 
all values of Q, the uniqueness of the 
channel estimate depends only on (29), that 
is 

        min(Q, L) + min(MU, L) ≥ L + 1        (34) 

Conditions (32) and (33) establish a trade-off 
between the time dimension (the number of IRS 
training blocks Q) and the two spatial dimensions 
(the number of transmitting antennas MB and the 
number of receiving antennas MU) for the case 
channel restore. For example, if Q < L, this 
condition implies MB + Q ≥ L + 1 and MU + Q ≥ L 
+1, which is equivalent to min(MB + Q, MU + Q) ≥ 
L + 1. That is, the number of transmitting (or 
receiving) antennas can be reduced while ensuring 
that the unique characteristic of the BALS channel 

estimation method is compensated by increasing 
the number of time blocks Q. 

4.3.2. The HBS-IRS  and GIRS-UT channel matrices 
lack rank 

In millimeter wave MIMO systems, a large number 
of transmit/receive antennas coupled with a poorly 
scattered propagation medium can result in low-
rank HBS-IRS and GIRS-UT channel matrices. Assume 
that the signal propagating between the BS base 
station and the IRS via C1 clusters, while the signal 
propagating  between the IRS and the  user 
terminal UT through the C2 cluster. Also, suppose 
that each cluster contributes a ray of complex 
amplitude and forms the angle of incidence or 
angle of departure. We can represent the HBS-IRS 
and GIRS-UT channel matrices as follows,37  

            Sdiag( ) ,BS IRS H
IRS B

 H A α A               (35) 

             diag( ) ,IRS UT H
UT IRS

 G B β B              (36) 

where, 1 1
BS IRS, ,BM C L C  A A  2 ,UM C

UT
B

2
IRS

L CB are array response matrices, and the 
vectors α, β are the complex amplitude coefficients 
of the BS-IRS and IRS-UT channels. In case of 
lack of rank, then rank(HBS-IRS) = C1 và     
rank(GIRS-UT) = C2, với C1 ≤ min(MB,  L) and C2 ≤ 
min(MU, L).  

Considering condition (26), the lack of rank of the 
channel matrix does not affect the solution of the 
channel estimation problem for the KRF algorithm. 
However, for the case of BALS estimation, since 
the uniqueness of the LS estimate of the GIRS-UT 
and HBS-IRS matrices depends on the rank of these 
matrices, as shown in conditions (28) and (29). For 
the BALS estimate, we can derive the following 
useful results. 

• Case T ≥ MB: Conditions (28) and (29) 
become 

    min(Q, L) + C1 ≥ L + 1           (37) 

    min(Q, L) + C2 ≥ L + 1                    (38) 

The following scenarios are possible. If Q ≥ L, we 
conclude that these conditions are always satisfied, 
for every ranks of the channel matrices. If Q < L, 
these conditions become Q + C1 ≥ L + 1 and Q + 
C2 ≥ L + 1, which is useful for choosing a block 
number Q that ensures the uniqueness of the 
channel estimates in the case lack of  rank. 

• Case Q ≥ L: In this case, conditions (28) and 
(29) are always satisfied, for all ranks of the GIRS-UT 
and HBS-IRS matrices. 
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with a poorly scattered propagation medium 
can result in low-rank HBS-IRS and GIRS-UT channel 
matrices. Assume that the signal propagating 
between the BS base station and the IRS 
via C1 clusters, while the signal propagating  
between the IRS and the  user terminal UT 
through the C2 cluster. Also, suppose that each 
cluster contributes a ray of complex amplitude 
and forms the angle of incidence or angle of 
departure. We can represent the HBS-IRS and GIRS-UT  
channel matrices as follows,37 

                         

vectors α, β are the complex amplitude 
coefficients of the BS-IRS and IRS-UT channels. 
In case of lack of rank, then rank(HBS-IRS) = C1  
and rank(GIRS-UT) = C2, with C1 ≤ min(MB,  L) and 
C2 ≤ min(MU, L). 

Considering condition (26), the lack of 
rank of the channel matrix does not affect the 
solution of the channel estimation problem for 
the KRF algorithm. However, for the case of 
BALS estimation, since the uniqueness of the 
LS estimate of the GIRS-UT and HBS-IRS matrices 
depends on the rank of these matrices, as shown 
in conditions (28) and (29). For the BALS 
estimate, we can derive the following useful 
results.

• Case T ≥ MB: Conditions (28) and (29) 
become

    min(Q, L) + C1 ≥ L + 1           (37)

    min(Q, L) + C2 ≥ L + 1                    (38)

The following scenarios are possible. If 
Q ≥ L, we conclude that these conditions are 
always satisfied, for every ranks of the channel 
matrices. If Q < L, these conditions become Q + 
C1 ≥ L + 1 and Q + C2 ≥ L + 1, which is useful 
for choosing a block number Q that ensures the 
uniqueness of the channel estimates in the case 
lack of  rank.

• Case Q ≥ L: In this case, conditions (28) 
and (29) are always satisfied, for all ranks of the 
GIRS-UT and HBS-IRS matrices.

5. SIMULATION RESULTS AND DISCUSSION

In this section, some simulation results are 
presented to evaluate the performance of the 
channel estimation methods in this article 
and compare them with similar methods. The 
channel estimates are evaluated in terms of  the  
Normalized Mean Square Error NMSE given by,6

                                                        

The SNR(dB) ratio is defined as

             

 

where,    is the generated noiseless received 
signal tensor corresponding to the expression (13),        
    is the additive noise tensor. 

In the simulation calculations, assuming 
the elements of the channel matrices HBS-IRS 
and GIRS-UT are independent and identically 
distributed (i.i.d) zero-mean circularly-symmetric 
complex Gaussian random variables. Note that 
the estimated channel matrix elements HÂBS-IRS  
and GÂIRS-UT in expression (21) of the KRF 
algorithm found using the SVD (Singular  
Value Decomposition) tensor operation                               
         In order to facilitate the  
evaluation of the quality of the algorithms, 
we choose the same system parameters as the 
reference articles, depending on each case.

Figure 3 depicts the NMSE performance 
curves in terms of SNR (dB) for the KRF and 
BALS algorithms. This is the result of system 
parameters T = 4, MB = 4, MU = 2, Q = 50 and the 
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Khatri-Rao form, applying the lemmas in,35,36 the 
result is 

        
 rank( ) rank 1

TBS IRS L     
S X H        (28) 

         rank( ) rank( ) 1IRS UT L  S G           (29) 

We are considering the channel training 
parameters, specifically calculating such that the 
IRS phase shift matrix S and the pilot symbols 
matrix X have full rank. These conditions are 
useful for system design when using the BALS 
estimation method. 

4.3.1. Full rank of channel matrix HBS-IRS and   
GIRS-UT 

Assuming that both HBS-IRS and GIRS-UT channel 
matrices have full rank (in case of Rayleigh fading 
channel), the condition (28)-(29) can be rewritten 
as 

         min(Q, L) + min(MB, L)  ≥ L + 1        (30) 

         min(Q, L) + min(MU, L)  ≥ L + 1        (31) 

We can distinguish two cases as follows. 

 L ≥ T ≥ MB and L ≥ MU: In this case, the 
base station BS and user equipment UT have 
small antenna array size, the number of BS 
and UT antennas is smaller than the number 
of IRS elements. Condition (28)-(29) 
becomes 

         MB + min(Q, L) ≥ L + 1          (32) 

          MU + min(Q, L) ≥ L + 1         (33) 

 T ≥ MB ≥ L: In this case, the base station BS 
is assumed to be equipped with a large 
antenna array. The minimum number of BS 
antennas is equal to the number of IRS 
elements (massive MIMO system setup). 
Since condition (28) is always satisfied for 
all values of Q, the uniqueness of the 
channel estimate depends only on (29), that 
is 

        min(Q, L) + min(MU, L) ≥ L + 1        (34) 

Conditions (32) and (33) establish a trade-off 
between the time dimension (the number of IRS 
training blocks Q) and the two spatial dimensions 
(the number of transmitting antennas MB and the 
number of receiving antennas MU) for the case 
channel restore. For example, if Q < L, this 
condition implies MB + Q ≥ L + 1 and MU + Q ≥ L 
+1, which is equivalent to min(MB + Q, MU + Q) ≥ 
L + 1. That is, the number of transmitting (or 
receiving) antennas can be reduced while ensuring 
that the unique characteristic of the BALS channel 

estimation method is compensated by increasing 
the number of time blocks Q. 

4.3.2. The HBS-IRS  and GIRS-UT channel matrices 
lack rank 

In millimeter wave MIMO systems, a large number 
of transmit/receive antennas coupled with a poorly 
scattered propagation medium can result in low-
rank HBS-IRS and GIRS-UT channel matrices. Assume 
that the signal propagating between the BS base 
station and the IRS via C1 clusters, while the signal 
propagating  between the IRS and the  user 
terminal UT through the C2 cluster. Also, suppose 
that each cluster contributes a ray of complex 
amplitude and forms the angle of incidence or 
angle of departure. We can represent the HBS-IRS 
and GIRS-UT channel matrices as follows,37  

            Sdiag( ) ,BS IRS H
IRS B

 H A α A               (35) 

             diag( ) ,IRS UT H
UT IRS

 G B β B              (36) 

where, 1 1
BS IRS, ,BM C L C  A A  2 ,UM C

UT
B

2
IRS

L CB are array response matrices, and the 
vectors α, β are the complex amplitude coefficients 
of the BS-IRS and IRS-UT channels. In case of 
lack of rank, then rank(HBS-IRS) = C1 và     
rank(GIRS-UT) = C2, với C1 ≤ min(MB,  L) and C2 ≤ 
min(MU, L).  

Considering condition (26), the lack of rank of the 
channel matrix does not affect the solution of the 
channel estimation problem for the KRF algorithm. 
However, for the case of BALS estimation, since 
the uniqueness of the LS estimate of the GIRS-UT 
and HBS-IRS matrices depends on the rank of these 
matrices, as shown in conditions (28) and (29). For 
the BALS estimate, we can derive the following 
useful results. 

• Case T ≥ MB: Conditions (28) and (29) 
become 

    min(Q, L) + C1 ≥ L + 1           (37) 

    min(Q, L) + C2 ≥ L + 1                    (38) 

The following scenarios are possible. If Q ≥ L, we 
conclude that these conditions are always satisfied, 
for every ranks of the channel matrices. If Q < L, 
these conditions become Q + C1 ≥ L + 1 and Q + 
C2 ≥ L + 1, which is useful for choosing a block 
number Q that ensures the uniqueness of the 
channel estimates in the case lack of  rank. 

• Case Q ≥ L: In this case, conditions (28) and 
(29) are always satisfied, for all ranks of the GIRS-UT 
and HBS-IRS matrices. 
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5. SIMULATION RESULTS AND 
DISCUSSION 

In this section, some simulation results are 
presented to evaluate the performance of the 
channel estimation methods in this article and 
compare them with similar methods. The channel 
estimates are evaluated in terms of  the  
Normalized Mean Square Error NMSE given by,6 
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where,  ( )ˆ lBS IRSH is the estimated BS-IRS 
channel at the l-th run, C represents the number of 
Monte Carlo runs. Similar definitions apply to the 

 ( )ˆ lIRS UTG channel estimation.  

The SNR(dB) ratio is defined as 
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where,  is the generated noiseless received 
signal tensor corresponding to the expression (13), 

is the additive noise tensor.  

In the simulation calculations, assuming the 
elements of the channel matrices HBS-IRS và GIRS-UT 
are independent and identically distributed (i.i.d) 
zero-mean circularly-symmetric complex Gaussian 
random variables. Note that the estimated channel 
matrix elements  -ˆ BS IRSH và ˆ IRS UTG in expression 
(21) of the KRF algorithm found using the SVD 
(Singular Value Decomposition) tensor operation 

SVD( )nt  Ω .32,33 In order to facilitate the 
evaluation of the quality of the algorithms, we 
choose the same system parameters as the 
reference articles, depending on each case. 

Figure 3 depicts the NMSE performance curves in 
terms of SNR (dB) for the KRF and BALS 
algorithms. This is the result of system parameters 
T = 4, MB = 4, MU = 2, Q = 50 and the number of 
IRS elements with different values L = 10, 50. In 
this article, the BALS estimation calculations, we 
choose e = 10-5.  Although the number of iterations 
of the BALS algorithm is natural, only a few 
iterations can be converged (usually less than 10 
iterations) thanks to the information that the IRS 
matrix S remains constant across the iterations. 

Observing the results of Figure 3, we see that both 
algorithms give the desired performance. With the 
same number of IRS elements L, the estimated 

performance of the two algorithms KPF and BALS 
is similar. In terms of complexity, the KRF 
algorithm has a lower complexity but more 
restrictive requirements for the training parameter 
Q. While the iterative BALS method, although 
computationally more complex, can operate under 
more flexible choices of system parameters and 
with lower training costs. The system parameter 
constraints we discussed in section 4.3. On the 
other hand, the NMSE performance decreases as 
the number of IRS elements increases L, which is 
the expected result since the number of channel 
coefficients in the matries GIRS-UT và HBS-IRS to be 
estimated also increases with L. This means that it 
is possible to increase the system estimation 
performance while reducing the structural 
complexity of the IRS. 

Figure 3. NMSE performance of channel estimates. 
ˆ BS IRSH and ˆ .IRS UTG

Figure 4. NMSE performance of composite channel 
parameter estimation ˆ .θ

Figure 4 is the result of calculating the NMSE 
performance of estimating the composite 
parameter vector θ according to the parameters Q
= 100, T = 4, MB = 3, MU = 20, and L has the 
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number of IRS elements with different values 
L = 10, 50. In this article, the BALS estimation 
calculations, we choose e = 10-5.  Although the 
number of iterations of the BALS algorithm is 
natural, only a few iterations can be converged 
(usually less than 10 iterations) thanks to the 
information that the IRS matrix S remains 
constant across the iterations.

Observing the results of Figure 3, we 
see that both algorithms give the desired 
performance. With the same number of IRS 
elements L, the estimated performance of the two 
algorithms KPF and BALS is similar. In terms 
of complexity, the KRF algorithm has a lower 
complexity but more restrictive requirements 
for the training parameter Q. While the iterative 
BALS method, although computationally more 
complex, can operate under more flexible 
choices of system parameters and with lower 
training costs. The system parameter constraints 
we discussed in section 4.3. On the other 
hand, the NMSE performance decreases as the 
number of IRS elements increases L, which is 
the expected result since the number of channel 
coefficients in the matries GIRS-UT và HBS-IRS to be 
estimated also increases with L. This means that 
it is possible to increase the system estimation 
performance while reducing the structural 
complexity of the IRS.

Figure 3. NMSE performance of channel estimates   
HÂBS-IRS và GÂIRS-UT.

Figure 4. NMSE performance of composite channel 
parameter estimation θ.

Figure 4 is the result of calculating the 
NMSE performance of estimating the composite 
parameter vector θ according to the parameters 
Q = 100, T = 4, MB = 3, MU = 20, and L has the 
values 10, 50, 100. This result is consistent with 
the results of Figure 3, the estimated efficiency 
decreases as the number of IRS elements L 
increases. Another method to overcome the 
performance degradation presented in,40 is to 
divide the IRS elements into groups of activation/
deactivation in a time-domain sequential 
manner. However, this method will increase the 
total training time by a factor proportional to the 
number of element groups.

Figure 5. Comparison of NMSE performance of 
KRF estimator and conventional LS estimator.

In Figure 5, we compare the estimation 
results of the KRF algorithm with the 
conventional LS method. In this result, we choose 
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Q = L = 50, T = MB = 20, MU = 8. The conventional 
LS method plotted on the graph is to estimate the 
composite channel parameter vector, ignoring 
the Khatri-Rao structure that is attenuated during 
the signal model vectorization. In contrast, 
the KRF algorithm in this paper exploits the 
Khatri-Rao channel structure and establishes     
from  channel estimation matrices the HÂBS-IRS  
và GÂIRS-UT. 

In Figure 6 is the NMSE performance 
estimate of the lacking rank HÂBS-IRS và GÂIRS-UT 
channel matrices. In this result, the channel 
matrices are created according to the model 
(35)-(36), the channel parameters are selected,  
Q = L = 64, MU = 4 and T = MB = 4; 20, where 
C1 = C2 = 1. For comparison, we use the NMSE 
results of the LS channel estimation method 
proposed in.38 

Observing the results of Figure 6, we see 
that the KRF algorithm has superior performance 
compared to the conventional LS algorithm. The 
gain in terms of SNR is about 7dB. This result 
is explained by the fact that KRF effectively 
exploits the Khatri-Rao structure present in the 
equivalence channel model. 

Figure 6. NMSE estimation results of composite 
channel parameter vector θ in the case of matrices  
HÂBS-IRS và GÂIRS-UT lacking rank.

Note that the KRF algorithm solves 
the problem by reshaping MBMU × L Khatri-
Rao channels as L IRS subchannels of size 
MB × MU, increasing noise rejection by rank-1 
approximation steps. As MB and MU increase 

in large numbers (corresponding to a masive 
MIMO systems), the larger the noise spread over 
the noise subspace and, therefore, the higher the 
level of noise rejection achieved. This is a special 
feature of the KRF channel estimation algorithm 
that the conventional LS channel estimation 
algorithm cannot exploit.

In study,38 the pilot signal time frame was 
the same as in this study, consisting of dividing 
the total training time into Q blocks and an 
IRS phase shift pattern that varied from block 
to block. In,38 the LS estimation method is used 
by dividing the training signal frame T into 
blocks, referred to as the “block-LS” method 
for short. In this result, we compare the KRF 
estimation algorithm in this paper with the 
block-LS estimation method in.38 We can see 
that the KRF estimation algorithm outperforms 
the block-LS estimation method in.38 The authors 
in,38 showed that the performance of the block-LS 
method was not affected as the number of MB 
transmitting antennas and the pilot sequence 
length T increased. This is in contrast to the KRF 
method which provides more accurate channel 
estimation as the antenna arrays are larger.  
Specifically, the SNR gain of the KRF algorithm 
compared to the block-LS method is nearly  
4.5 dB for MB = 4 and increased to 5.5 dB for  
MB = 20. This can be explained as follows. 
For the KRF algorithm, through exploiting the 
Khatri-Rao structure of the cascaded  channel, 
the level of noise cancellation is higher when 
the number of MB transmitting antennas or MU 
receiving antennas is increased. However, this 
advantage comes at the expense of increased 
computational complexity, as well as increased 
length of pilot sequences.

6. CONCLUSION AND DEVELOPMENT 
DIRECTION

In this paper, we have extended the LS channel 
estimation algorithm for MIMO information 
system assisted by IRS based on tensor model. 
The KRF and BALS channel estimation 
algorithms are established by efficiently 
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exploiting the tensor structure of the received 
signal. Both algorithms perform separate 
estimation of the transmission channels between 
the BS to the IRS and from the IRS to the UT with 
the passive elements of the IRS. The closed-form 
KRF algorithm has lower complexity but more 
restrictive requirements for training parameter Q.  
While BALS iterative method, although 
computationally more complex, can operate on 
more flexible choices for training parameter Q 
with lower training cost. In this article, we also 
consider the relationship between the system 
parameters to ensure the uniqueness of the 
channel estimates. These constraints are useful 
when designing system channel estimates. Some 
simulation and discussion calculation results, we 
have demonstrated the superior performance of 
KRF and BALS compared with the conventional 
LS estimator, ignoring the Khatri-Rao structure 
of the combined channel matrix. In the proposal 
of this paper, in section 4.3, we give useful 
recommendations for the selection of system 
parameters to ensure the uniqueness of channel 
estimation.

The KRF and BALS channel estimation 
algorithms mentioned in this paper can improve 
the performance by exploiting the knowledge 
of the rank of the estimation matrices, or, using 
compression sensing methods to take advantage 
of the sparse representation of the HBS-IRS and 
GIRS-UT channel matrices. This could be the next 
research direction of interest.
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TÓM TẮT

Trong những năm gần đây, việc sử dụng thiết bị thu nhiệt năng mặt trời đang ngày càng gia tăng vì đây là 
một phương pháp trực tiếp và hiệu quả để biến năng lượng mặt trời thành các nguồn năng lượng có thể sử dụng 
được. Trong xu hướng này, các nghiên cứu tập trung vào việc phát triển cấu trúc nano của các nitride kim loại 
chuyển tiếp và oxynitride kim loại, nhằm tối đa hóa khả năng thu năng lượng từ mặt trời. Trong nghiên cứu này, 
vật liệu zirconium(oxy)nitride (Zr(O)N) đã được tổng hợp thành công bằng cách xử lý ZrO2 trong môi trường khí 
NH3 ở nhiệt độ cao nhằm ứng dụng trong quá trình chuyển đổi năng lượng quang nhiệt. Để xác định đặc điểm cấu 
trúc tinh thể, hình thái và tính chất của các vật liệu này, các kỹ thuật phân tích như nhiễu xạ tia X (XRD), kính hiển 
vi điện tử quét (SEM) và phân tích phổ phản xạ khuếch tán tử ngoại khả kiến (UV-Vis DRS) đã được sử dụng. 
Các kết quả cho thấy rằng pha tinh thể zirconium(oxy)nitride bắt đầu hình thành ở nhiệt độ 1150 oC. Các vật liệu 
Zr(O)N đã tổng hợp thể hiện khả năng hấp thụ năng lượng mặt trời và tạo ra nhiệt một cách hiệu quả. Các kết quả 
này cho thấy Zr(O)N có thể được tổng hợp bằng phương pháp đơn giản và có tiềm năng lớn trong các ứng dụng 
chuyển hóa năng lượng quang - nhiệt.

Từ khóa: Hạt nano ZrO2 , ZrN, Zr(O)N, chuyển hóa năng lượng quang nhiệt.
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ABSTRACT 

In recent years, there has been a growing focus on solar thermal collectors as they offer a direct and efficient 
means of converting solar energy into usable forms. In line with this, significant attention has been directed 
towards advancing transition metal nitride and metal oxynitride nanostructures for solar-thermal collectors to 
maximize solar energy harvesting. In this study, we have successfully synthesized zirconium(oxy)nitride (Zr(O)N) 
materials for photothermal energy conversion. The process involved treating ZrO2 in NH3 at high temperatures, 
resulting in the creation of nanoparticles with promising properties. To characterize the materials, we conducted 
thorough investigations using X-ray diffraction (XRD), scanning electron microscopy (SEM), and ultraviolet-
visible diffuse reflectance spectroscopy (UV-Vis DRS). The findings indicate that the Zr(O)N crystalline phase 
initiates its formation at 1150 °C. The Zr(O)N materials possess a robust capacity for absorbing solar energy and 
efficiently producing heat. Furthermore, these outcomes highlight the feasibility of synthesizing Zr(O)N through 
a straightforward approach, underscoring their significant potential for applications in photothermal conversion.

Keywords: ZrO2 nanoparticles, ZrN, Zr(O)N, photothermal energy conversion.

*Corresponding author. 
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1. INTRODUCTION

In recent times, there has been a notable increase 
in the exploration of group IVB transition-
metal nitrides, as opposed to noble metals like 
Au and Ag, to broaden the scope of plasmonic 
applications and deepen our understanding of 
light-matter interactions.1,2 This shift has the 
potential to revolutionize core technologies in 
fields such as telecommunications, computing, 
efficient solar harvesting, solid-state lighting, 

photochemistry, photo- and bio-sensing, 
diagnostics, and therapeutics.3,4 Among these 
materials, titanium nitride (TiN) has garnered 
significant interest. However, zirconium nitride 
(ZrN) holds particular importance due to its 
distinct physical properties, including excellent 
anti-corrosion characteristics and a high melting 
point.5 Importantly, ZrN exhibits a zero crossover 
wavelength within the visible spectrum, similar 
to Au, which grants them plasmonic properties 
in the visible and near-infrared regions.3 This 
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feature enhances their ability to absorb sunlight 
and convert it into heat, making them highly 
suitable for solar light harvesting applications.6 

Numerous techniques can be employed 
for the synthesis of ZrN, such as high-energy 
ball milling of Zr elemental powders in a 
nitrogen gas environment at room temperature,7 
the magnesium thermal reduction process,8 
a nonthermal plasma reactor,9  the initiation 
of exothermal reactions through microwave 
radiation,10 and the utilization of metalorganic 
chemical vapor deposition method.11,12 Among 
these approaches, the reduction-nitridation of 
zirconium oxide (ZrO2) is frequently employed 
for the synthesis of zirconium nitride. This 
method involves the direct nitriding of ZrO2 
using ammonia gas at elevated temperatures.12-14 

Zirconium Nitride (ZrN) possesses 
distinctive properties, including a high melting 
point (2952 oC) and single crystal hardness 
(22.7±1.7 GPa), strong covalent Zr-N bonding 
and excellent chemical resistance, and stability, 
making it highly suitable for applications as 
coatings and protective layers.15-17 Recently, 
ZrN has garnered attention as an excellent 
material for electrodes in energy storage 
and conversion,18 owing to its exceptional 
electrical conductivity, mobility, and impressive 
electrochemical performance.4,19,20 Moreover, 
ZrN has emerged as a promising alternative 
plasmonic material, finding diverse applications 
in solar cells,21 solar light harvesting,22 and 
solar to heat energy conversion.23,24 Its unique 
properties make it a valuable candidate in 
these solar-related technologies. Furthermore, 
zirconium oxynitride, similar to zirconium 
nitride, has piqued special interest as a material 
for solar-thermal collectors. This interest is due 
to its remarkable solar absorptance and thermal 
stability.9,24,25 Thus, both ZrN and zirconium 
oxynitride exhibit great potential in advancing 
various applications related to energy conversion 
and utilization.

In this study, a straightforward approach 
was introduced to produce zirconium(oxy)nitride 
nanoparticles through the reduction-nitridation 
process of zirconium oxide nanoparticles (ZrO2 
NPs) in NH3 gas at elevated temperatures. 
SEM images illustrated that average particles 
increased during nitridation process. Notably, 
the results revealed the formation of cubic ZrN 
phase at 1150 °C, and the materials exhibited 
strong and broad absorption spanning from the 
visible to near-infrared region (~300 – 2000 nm). 
Furthermore, the potential of the synthesized 
nanoparticles in solar-thermal energy conversion 
was also assessed. 

2. EXPERIMENTAL

2.1. Chemicals 

The raw materials used in this study including 
zirconium dioxide (ZrO2, 99.95%), zirconium 
nitride (ZrN, 99.9%),  ammonia and nitrogen gas 
(NH3, H2, > 99.9%) were supplied from Aladdin 
Reagent Co., Ltd., China.

2.2. NH3 treatment of ZrO2 nano particles

Initially, 8 mg of ZrO2 powder was carefully 
placed into a ceramic boat, which was then 
positioned at the center of a quartz-tube furnace 
using a customized setup. This setup allowed 
for precise control of temperature, pressure, 
and gas flow during the experiment. One end of 
the quartz tube was connected to the gas inlet, 
with N2 and NH3 gases available. The other 
end was connected to a mechanical vacuum 
pump. To begin the process, the quartz tube was 
evacuated to achieve a vacuum level of 10−3 
mbar. Subsequently, the furnace was pre-heated 
to 300 °C. To eliminate any contaminants, the 
tube was purged multiple times with N2 gas. 
Once prepared, the temperature in the furnace 
was raised either to 1050 or 1150 °C, both at 
a ramping rate of 5 °C min−1. After the desired 
temperature was stabilized, pure ammonia gas 
was continuously introduced into the furnace 
at a flow rate of 400 sccm for a duration of  
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1.5 hours. Following this, the furnace was 
gradually cooled down to 100 °C in an NH3 
environment and further to room temperature in 
N2 before unloading the sample. 

2.3. Material characterization 

The crystalline structure of the obtained samples 
was studied by powder X-ray diffraction (XRD) 
employing an X-ray diffractometer (Brucker 
Phaser, D2) using Cu Kα irradiation (λ = 0.154 nm).  
The surface morphology of the synthesized 
materials was characterized by scanning electron 
microscopy (SEM) using a HITACHI S-4800 
microscope. UV-Vis absorption spectra were 
measured using a Shimadzu 2600 UV-visible 
spectrometer.

2.4. Photothermal materials study

For each experimental run, 0.8g of PVP 
(Polyvinylpyrrolidone) and 9.5 mL of DMF 
(N,N-Dimethylformamide) were combined in 
a 100 mL glass beaker and stirred for a period 
of 4 hours. Subsequently, 0.01g of ZrO2 1150 
nanoparticles was added to the mixture and 
dispersed with sonication for 10 minutes. The 
resulting ZrO2 1150 nanoparticle suspension 
was then used to create thin layers on glass slides  
(2 cm x 2 cm) through the spin-coating method, 
spinning at 1500 rpm for 60 seconds.

To evaluate the solar-thermal energy 
conversion performance of the prepared 
samples, a custom-made closed metal chamber 
made of steel was utilized. The metal chamber 
was insulated with fiber glass material to 
minimize heat loss. The prepared samples were 
placed at the center of this chamber and exposed 
to sunlight irradiation. The temperature of the 
ZrO2 1150 layer was monitored using a K-type 
temperature probe. Additionally, temperature 
measurements inside the chamber and the 
ambient air outside were recorded using mercury 
temperature meters. The photon flux of sunlight 
was measured using a luminous flux meter from 
China. Throughout the experiments, data was 
recorded at 10-minute intervals to analyze the 
performance of the samples.

3. RESULTS AND DISCUSSION

The XRD patterns of the ZrO2 NPs before and 
after the NH3 treatment at 1050 and 1150 oC 
(sample ZrO2 1050 and ZrO2 1150) are presented 
in Figure 1. In the case of ZrO2 nanoparticles 
(referred to as ZrO2 TM), all observed diffraction 
peaks corresponding to monoclinic (m) and 
tetragonal (t) crystal structure phases were 
accurately matched with standard data of  
ZrO2 (PDF Card - 00-036-0420 and PDF  
Card - 00-042-1164, respectively).26,27 This result 
also indicates high purity of ZrO2 TM (red trace).

Figure 1. XRD diffraction patterns of ZrO2 precusor 
and ZrO2 after annealing in NH3 at 1050 and 1150 oC.

Upon NH3 treatment of ZrO2 at 1050 °C,  
the peaks related to the monoclinic (m) 
phase of ZrO2 nearly vanish, while most of 
those corresponding to the tetragonal ZrO2 

remain, e.g., at 31.3o, 36.3o, 52.3o and 62.1o 
(pink trace).28,29 Furthermore, at the higher 
temperature of 1150 °C, the treatment results 
in the appearance of new peaks at 33.9°, 39.4°, 
56.9°, and 67.9° (black stars), corresponding 
to diffraction planes of the (111), (200), (220), 
and (311) atomic planes of the face-centered 
cubic (FCC) structure of ZrN (PDF Card - 00-
031-1493).16,30 There are two peaks at 43.1o and 
63.2o (red dots) which can be attributed to the 
insulating-metallic phase transition (ZrOxNy).

29 
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Interestingly, annealing ZrO2 in NH3 transforms 
the mixture of monoclinic and tetragonal crystal 
structure phases into the single phase of t-ZrO2 
and initiates a new phase of ZrN.

Figure 2 displays scanning electron 
microscopy (SEM) images of a representative 
sample, along with the particle size distribution, 
which was measured and determined using 
Digital Micrograph. 

Figure 2. SEM images and the particle size 
distribution of (a) ZrO2 TM, as well as ZrO2 after 
being treated in NH3 at different temperatures: (b) 
1050 °C, and (c) 1150 °C. The color of the powders is 
also illustrated in the respective insets.

The SEM images present the shapes and 
sizes of ZrO2 TM nanoparticles (Figure 2a)  
and the same nanoparticles after annealing 
in ammonia at 1050 °C (Fig. 2b) and 1150 °C 
(Figure 2c). In Figure 2a, ZrO2 TM exhibits a 
wide variation in particle sizes, with an average 
diameter of approximately 137.67 ± 40.30 nm, 
represented by the top red distribution curve. 
After treatment at 1050 °C, the average diameter 
increases significantly to 206.58 ± 45.90 nm, a 
nearly 15% increment, as shown by the middle 
blue distribution. Subsequently, the particle size 
further grows by about 17% after treatment  NH3 
at 1150 °C, resulting in an average diameter of 

about 238.03 ± 64.69 nm, as illustrated in the 
bottom black curve. The growth of particle 
sizes is due to higher reaction temperature. 
In addition, the substantial differences in size 
between the ZrO2 1050 and ZrO2 1150 samples, 
approximately 22% and 27%, respectively, can 
be attributed to the significant variability in the 
size of the ZrO2 TM particles, estimated to be 
around 29%.

The findings reveal that NH3 treatment at 
temperatures ranging from 1050 to 1150 °C does 
not significantly impact the surface morphology 
of the nanoparticles. However, it does induce 
remarkable changes in both particle size and 
the appearance of the powder color. These color 
variations are clearly visible in the optical images 
within the SEM images, showcasing a gradual 
shift from white (ZrO2 TM) to dark gray (ZrO2 
1050) and ultimately black (ZrO2 1150), which 
is the typical color of ZrN powder. This color 
transformation aligns with the light absorption 
characteristics observed in the following UV-Vis 
absorption spectra.

To investigate the optical properties of the 
composites, UV-vis diffuse reflectance spectral 
analysis was conducted on ZrO2 powder, as well 
as the ZrO2 samples treated in NH3 at 1050 and 
1150 °C. The results obtained from the analysis 
are presented in Figure 3.

Figure 3. UV-Vis absorption spectra of the 
representative samples and the corresponding band 
gap  calculations using the Kubelka-Munk method as 
indicated in the inset.
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The UV-Vis absorption spectrum ZrO2 TM 
shows a sharp and prominent absorption band 
with maximum at around 277 nm (4.48 eV 
in photon energy) which can arise due to the 
transition between valence band to conduction 
band.28,31 However, this absorption peak for the 
ZrO2 nanostructure in the UV-region is at lower 
energy as compared to the previous report on 
the optical band gap for bulk ZrO2 (5.0 eV).32 
This indicates that there is still contribution 
from extrinsic states towards the absorption in 
this region. Apart from the strong absorption 
peak, a broad and weak absorption  from visible 
to near infrared exists. The weak absorption in 
the visible and near IR region is expected to 
arise from transitions involving extrinsic states 
such as surface trap states or defect states or 
impurities.32 The direct band gap energy can be 
determined by Kubelka-Munk method, about 
3.7 eV, as indicated by the blue trace in the inset 
of Figure 3.

When comparing with pure ZrO2, the 
absorption spectrum of ZrO2 1050 reveals 
distinct characteristics. It displays a pronounced 
absorption peak at 391 nm with an energy gap 
(Eg) of approximately 2.3 eV, as depicted in the 
red trace within the inset. Additionally, there is 
a broad and potent absorption band spanning 
from the visible to the near-infrared spectrum. 
The initial absorption can be attributed to the 
band gap of zirconium oxynitride,28,33,34 while 
the broad absorption is the result of a continuous 
depopulation of the d-band and the creation of 
an energy gap between the valence band and the 
Fermi level.35 

Upon increasing the annealing temperature 
to 1150 °C, a phase transition to ZrN commences 
from the outer layer of ZrO2 1150 particles, 
as evidenced by the XRD pattern. This 
transformation yields a significantly intensified 
and broadened absorption spectrum over a 

wide range, extending from the ultraviolet 
to the near-infrared region. Several factors 
contribute to this phenomenon, including the 
plasmonic behavior arising from the metallic 
content of ZrN/Zr2ON2,

9,36 the presence of 
oxygen/zirconium vacancies or interstitials32,37 
and a diverse distribution of particle sizes, 
as observed in Figure 2. Notably, the broad 
plasmon resonance spectrum featuring a central 
peak around 530 nm and the heightened light 
absorption within the visible-near infrared range 
at elevated temperatures hold immense promise 
for applications in solar light harvesting.

Figure 4 illustrates temperature 
measurements conducted within a metallic 
enclosure and on glass coated with ZrO2 1150 
nanoparticles. The temperature of the ZrO2 
1150-coated glass is depicted as the red trace, 
the air temperature within the chamber is 
represented by the black trace, and the photon 
flux is displayed as the blue trace (transmitted 
through a chamber window glass with over 90% 
light transmission). In Figure 4a, temperature 
measurements taken outdoors in an environment 
with an ambient air temperature of 26 °C are 
displayed for both inside the chamber and the 
glass film coated with ZrO2 1150 nanoparticles, 
all under sunlight illumination.

The outcomes reveal a proportional 
increase in the temperature of the ZrO2 
1150-coated glass with rising photon flux. After 
a continuous 60-minute exposure to sunlight, 
the glass coated with ZrO2 1150 nanoparticles 
reaches a peak temperature of 60 °C, presenting 
a temperature differential (ΔT) of approximately 
15 °C above the air temperature within the 
enclosed metal box (around 45 °C). These initial 
findings strongly suggest the potential of 
zirconium oxynitride as a viable material for 
applications involving photothermal energy 
conversion.
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Figure 4. Temperature arising from ZrO2 1150 
material under sunlight exposure: the temperature of 
the ZrO2 1150-coated glass is depicted as the red trace, 
the air temperature within the chamber is represented 
by the black trace, and the photon flux is displayed as 
the blue trace (transmitted through a chamber window 
glass with over 90% light transmission).

4. CONCLUSION

In brief, we have illustrated a straightforward 
method for producing zirconium(oxy)nitride 
nanoparticles. These particles display robust 
and extensive light absorption across a wide 
spectrum of solar wavelengths, encompassing 
the UV-vis to infrared range. We evaluated their 
ability for photothermal energy conversion by 
employing a metal chamber setup, where ZrO2 
1150 nanoparticles -coated glass were tested. The 
results indicated a significant heat generation, 
surpassing the surrounding temperature by 
approximately 30%. This experimentation 
underscores the promising prospects of utilizing 
zirconium(oxy)nitride for enhancing solar-to-
heat conversion performance.
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TÓM TẮT

Khoáng sản, với thành phần hóa học phức tạp và cấu trúc tinh thể, đóng một vai trò then chốt trong nhiều 
quá trình hóa học, ứng dụng, và nghiên cứu. Truyền thống, việc phân loại chúng được thực hiện thông qua các kỹ 
thuật quan sát và hóa học. Tuy nhiên, với việc tăng số lượng mẫu, các phương pháp này thường mất nhiều thời 
gian. Những tiến bộ gần đây trong Trí tuệ nhân tạo (AI) và Học sâu (DL) hứa hẹn những cải tiến đột phá về tốc độ 
và độ chính xác của việc phân loại khoáng sản. Tuy nhiên, các mô hình DL, mặc dù chính xác, thường hoạt động 
như những “hộp đen”, làm cho quyết định của chúng không tường minh. Để giải quyết điều này, nghiên cứu của 
chúng tôi giới thiệu một khung chương trình dựa trên AI cho việc phân loại khoáng sản, kết hợp các mô hình tiên 
tiến với AI Giải thích được (XAI) và mô hình AI sinh ngôn ngữ lớn (LLMs) như GPT-4. Chương trình này không 
chỉ phân loại một số lượng lớn các khoáng sản mà còn giải thích lý do phía sau mỗi lựa chọn phân loại. Thông qua 
sự kết hợp của mô hình Swin Transformer V2 cho việc nhận dạng khoáng sản, GradCAM cho tính minh bạch của 
mô hình, và GPT-4 để truy xuất thông tin khoáng sản chi tiết, chương trình cung cấp sự kết hợp cân đối giữa hiệu 
suất, khả năng giải thích và thông tin hướng tới người dùng. Chương trình có thể được truy cập công khai, nhấn 
mạnh tiềm năng của AI trong việc cách mạng hóa việc phân loại khoáng sản trong khi vẫn đáp ứng nhu cầu về 
sự rõ ràng, minh bạch và giáo dục người dùng. Đường dẫn truy cập công khai tại https://huggingface.co/spaces/
minatosnow/mineral_framework.

Từ khóa: Phân loại khoáng sản, AI giải thích được, mô hình AI sinh ngôn ngữ lớn.
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ABSTRACT

Minerals, with their intricate chemical compositions and crystalline structures, play a pivotal role in diverse 
chemical processes, applications, and research. Traditionally, their classification was achieved through observational 
and chemical techniques. However, with increasing sample sizes, these methods often proved time-consuming. 
Recent advances in Artificial Intelligence (AI) and Deep Learning (DL) promise transformative improvements 
in the speed and accuracy of mineral classification. However, DL models, for all their precision, often operate 
as “black boxes”, making their decision-making opaque. To address this, our study introduces an innovative AI-
powered framework for mineral classification, integrating state-of-the-art models with Explainable AI (XAI) and 
generative AI large language models (LLMs) like GPT-4. This framework not only categorizes a wide-ranging 
number of minerals but also elucidates the reasoning behind each classification. Through a combination of Swin 
Transformer V2 models for mineral identification, GradCAM for model transparency, and GPT-4 for detailed 
mineral information retrieval, the framework offers a balanced blend of performance, interpretability, and user-
centric information. Available for public access, this system underscores the potential of AI to revolutionize mineral 
classification while staying attuned to the demands of clarity, transparency, and user education. The framework can 
be publicly accessed via https://huggingface.co/spaces/minatosnow/mineral_framework.

Keywords: Mineral classification, explainable AI, generative AI large language models.

*Corresponding authors. 
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1. INTRODUCTION

Minerals are naturally occurring inorganic 
substances with a specific chemical composition 
and crystalline structure.1 Mineral classification 
is the systematic categorization of minerals based 
on their physical and chemical properties.2,3 
This classification provides detailed insights 
into the chemical composition and structure of 
minerals. By categorizing minerals, chemists 
can predict their behavior, reactivity, and 

stability.4 This understanding is fundamental for 
various chemical processes, including synthesis, 
analysis, and industrial applications. Mineral 
classification is not only an academic exercise 
but also a vital practice in the chemical field. It 
underpins various industrial processes, medical 
applications, environmental protection, and 
research endeavors. Its importance continues 
to grow with the increasing complexity and 
specialization of chemical products and 
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processes, making it an indispensable aspect of 
modern chemistry.2,3,5

Traditionally, mineral classification 
has been carried out through a combination of 
physical observation and chemical analysis.6 
Regarding the physical properties, minerals are 
often classified based on their hardness, luster, 
color, streak, and specific gravity. The Mohs scale, 
for example, is used to classify minerals based on 
hardness.7,8 Minerals can be grouped into classes 
based on their primary anionic species, such as 
silicates, carbonates, and sulfates.9,10 Chemical 
tests, such as flame tests and wet chemical 
analysis, are used to identify the presence 
of specific elements or compounds.6,11 X-ray 
diffraction and other microscopic techniques 
are also employed to analyze the crystalline 
structure of minerals, further categorizing them 
into specific groups.12–14 Additionally, another 
approach is to use polarizing microscopes to 
study the optical properties of minerals, such 
as birefringence and pleochroism, which can be 
essential for classification.15–17

However, conventional methods might 
be labor-intensive and time-consuming, 
particularly when dealing with a large number 
of samples. With the advent of Artificial 
Intelligence (AI) and Deep Learning (DL), the 
field of mineral classification has witnessed a 
significant transformation.18–20 The application 
of DL techniques to mineral classification on 
images has opened new avenues for accurate and 
automated classification. DL models can easily 
scale to handle vast datasets, providing rapid 
classification without compromising accuracy.

Nevertheless, DL models, particularly 
complex neural networks (NNs), are often 
referred to as “black boxes” due to their lack of 
transparency in how they arrive at a particular 
decision.21–24 While these models can achieve 
high accuracy, understanding the specific 
reasoning behind their decisions can be elusive. 
This lack of transparency poses significant 
challenges, particularly in understanding the 

rationale behind specific classifications and in 
ensuring trust and compliance with regulatory 
standards. Consequently, there is a growing 
imperative for the integration of Explainable 
AI (XAI) methods, which aim to unravel the 
intricate workings of DL models, providing 
insights into their decision-making processes.25,26 
Besides that, recent works in generative AI large 
language models (LLMs) have shown promising 
results in generating human-like text that can be 
leveraged to provide more information and facts 
about the model’s decisions.27 

Hence, in this paper we propose an 
AI-assisted mineral classification framework 
leveraging several state-of-the-art models in a 
multi-class classification task integrated with 
XAI techniques and generative AI LLMs. This 
integration not only enhances the interpretability 
of mineral classification but also provides 
clear and plausible insights into the decision-
making process for the end-users. Our proposed 
framework is tailored to meet the specific 
needs of the chemical field, ensuring that the 
classifications are both scientifically robust and 
readily interpretable. Through our framework, 
we aim to address the critical challenge of 
transparency in AI-driven mineral classification, 
offering a solution that balances performance 
with interpretability, and understandability, 
tailored to the unique requirements of the 
chemical domain. The framework can be 
publicly accessed via https://huggingface.co/
spaces/minatosnow/mineral_framework.

2. RELATED WORK

2.1. Deep learning in mineral classification

DL has emerged as a powerful tool in the field of 
mineral classification, leveraging the ability to 
learn complex patterns and relationships directly 
from data, which has been greatly facilitated 
by the availability of large datasets, powerful 
computing resources, and the development of 
sophisticated algorithms.18–20 

Convolutional Neural Networks (CNNs)28 
are deeply structured feedforward NNs and one 
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of the representative algorithms of DL, which 
can be applied to automatically extract optical 
features of minerals for mineral identification 
or accelerate the microphase classification. A 
hybrid approach combining mineral photo image 
features extracted by CNN EfficientNet-b4 and 
mineral hardness features to identify minerals.7 
U-Net model is utilized to effectively and 
automatically extract deep feature information 
of ore minerals, realizing intelligent recognition 
and classification under the microscope.29 
ResNet-18 and ResNet-50 models is proposed 
for DL-based intelligent mineral recognition, 
enhancing data with image flipping and scale 
transformation.30–32 

However, challenges related to 
interpretability and data dependence remain, 
where the generated models are complex and 
difficult to interpret and good accuracy is only 
guaranteed when the amount of data is large 
enough, limiting the application in scenarios 
with limited data, calling for further research and 
innovation in the field.20,33

2.2. Swin transformer – hierarchical vision 
transformer using shifted windows 

Given the aim of our research to classify images 
according to their corresponding mineral 
specimen, we undertake this endeavor within the 
paradigm of image classification-a canonical yet 
persistently demanding task within the domain 
of computer vision (CV). For this purpose, we 
have chosen to utilize a leading-edge model 
known as the Swin Transformer. The Swin 
Transformer is a hierarchical vision transformer 
characterized by its use of shifted windows 
to compute its representations.34 This model 
has been meticulously crafted to navigate the 
inherent challenges of transposing transformers 
from linguistic contexts to visual ones. These 
challenges encompass the vast disparities in 
scale among visual entities and the inherent 
high resolution of pixels in images, which stand 
in stark contrast to the relative simplicity of 

words within a textual context. The deployment 
of a shifted windowing scheme serves a dual 
purpose: it enhances computational efficiency 
by restricting self-attention computations to 
discrete, non-overlapping local windows, 
and concurrently, it facilitates cross-window 
connections. The hierarchical nature of this 
architecture bestows upon it the versatility 
to operate across multiple scales, all while 
maintaining linear computational complexity 
in relation to image size. Such attributes render 
the Swin Transformer a suitable candidate for 
an array of vision tasks, spanning from image 
classification to object detection and semantic 
segmentation.34 These qualities make Swin 
Transformer compatible with a broad range of 
vision tasks, including image classification, 
object detection, and semantic segmentation.35

Furthermore, Swin Transformer V2 
represents a sophisticated evolution of the 
original Swin Transformer model, with an 
emphasis on augmenting both its capacity and 
resolution.36 The associated paper addresses 
three predominant challenges encountered 
during the training and application of expansive 
vision models: training instability, discrepancies 
in resolution between the stages of pre-training 
and fine-tuning, and an acute dependence 
on labeled data. To rectify these issues, the 
authors propose three primary strategies: 1) 
The combination of a residual-post-norm 
approach with cosine attention to bolster training 
stability; 2) The introduction of a log-spaced 
continuous position bias method, facilitating 
the seamless transference of models pre-trained 
on low-resolution images to downstream tasks 
necessitating high-resolution inputs; and 3) 
The deployment of a self-supervised pre-
training technique named SimMIM, which 
mitigates the requirement for vast repositories 
of labeled images. Leveraging these strategies, 
the researchers were successful in training 
a Swin Transformer V2 model comprising a 
staggering 3 billion parameters, marking its 
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position as one of the most voluminous dense 
vision models presently available. Impressively, 
this model has established new benchmarks in 
performance across four cardinal vision tasks: 
ImageNet-V2 image classification, COCO object 
detection, ADE20K semantic segmentation, and 
Kinetics-400 video action classification.36,37

2.3. Explainable AI

XAI is a field of research that aims to make the 
decisions and predictions of AI systems more 
transparent and interpretable to humans. There 
are several approaches to achieving this goal, 
including gradient-based, perturbation-based, 
and Class Activation Mapping (CAM)-based 
methods.

Gradient-based methods, such as LRP,38 
use gradient signals to assign the burden of the 
decision on the input features. These techniques 
can be evaluated for their robustness and the 
role that adversarial robustness plays in having 
meaningful explanations. 

Perturbation-based methods investigate 
properties of deep neural networks (DNNs) by 
perturbing the input of a model. For example, 
part of the input image can be occluded with a 
mask or a word in a sentence can be replaced 
with its synonym, and the changes in the output 
of the model can be observed. Some notable 
perturbation-based methods are LIME,23 RISE, 

D-RISE,39 D-CLOSE.

CAM-based methods, such as CAM,40 
GradCAM,41 GradCAM++, SeCAM,24,42 
ScoreCAM,43 are visual explanation techniques 
that use class activation maps to highlight the 
regions of an input image that are most relevant 
to the model's prediction.

In this work, we employ GradCAM41 
for model debugging and to make CNN-based 
models more transparent to end-users, primarily 
in visual tasks like image classification. By 
visualizing the important regions in an image as 
a high-resolution heatmaps, developers and end-

users can better understand if a model is focusing 
on the correct patterns or perhaps getting misled 
by noise or other irrelevant features. GradCAM 
offers easily interpretable visualizations that 
align well with human intuition.44

2.4. Generative AI with large language models

In the arena of AI, generative AI LLMs have 
garnered significant attention. Such models, 
underpinned by extensive datasets, possess 
the aptitude to synthesize text that is strikingly 
analogous to human-authored content. One of 
the most distinguished models in this domain is 
the Generative Pre-trained Transformer (GPT), 
a brainchild of OpenAI.45 GPT has seen several 
iterations, with the latest being GPT-4.46 In 
parallel, Llama 2 has emerged as a notable LLM, 
a product of collaborative efforts between Meta 
and Microsoft. This model stands out due to its 

Figure 1. The flowchart representation of the 
proposed mineral classification framework. After 
the classification model receives the input image 
loaded by end-users, the top-1 prediction is fed into 
the XAI method to deliver the explanation map, and  
into the generative AI LLM to give information and  
facts about the classified mineral.
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training on a contemporaneous and more eclectic 
dataset. Claude 2, heralded by Anthropic, is 
another LLM worth mentioning, boasting 
enhanced performance, safety, harmlessness 
and an aptitude for generating more extensive 
responses. Additionally, the BLOOM, an 
exemplar of open science and accessibility, was 
conceived by the BigScience team at Hugging 
Face. Specifically designed to elaborate on 
textual prompts, BLOOM capitalizes on 
industrial-grade computational capacities to 
produce coherent text across 46 languages and 
13 programming languages, rivaling the fidelity 
of human-generated content.

These expansive LLMs exemplify the 
forefront of advancements in their uncanny 
capacity to emulate human text generation. 
Their implications are manifold, particularly 
within domains such as natural language 
processing (NLP) and machine learning (ML). 
Consequently, they remain at the epicenter of 

fervent academic inquiry and technological 
progression.27,47

3. PROPOSED FRAMEWORK

In this work, we introduce an innovative 
framework for mineral classification augmented 
by Swin Transformer V2 models. This framework 
seamlessly integrates XAI techniques with 
LLMs with the overarching aim of enhancing 
the interpretability and understandability of the 
generated models. A comprehensive illustration 
of the structural composition of our mineral 
classification framework is provided in Figure 1. 
Moreover, to offer a tangible glimpse into its real-
world implementation, the user interface (UI) of 
our proposed framework is depicted in Figure 2. 

The ensuing sections meticulously detail 
each phase of our methodology-ranging from 
data preparation and model training to the 
nuanced intricacies of integrating XAI and 
LLMs into our framework.

Figure 2. The mineral classification framework user interface (UI) deployed on the Huggingface platform  
with Gradio UI. The framework requires end-users to upload a mineral image and choose a classification model  
(the default model is set as SwinV2-Tiny) on the left panel. On the right panel, the top-5 predictions from models, 
explanation map of XAI methods on the model’s prediction, and information retrieval about the top-1 classified 
mineral from GPT-4 are delivered.
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3.1. Data preparation

Initiating with data acquisition, we embarked on 
a web-crawling exercise, amassing a rich dataset 
of mineral images, each meticulously annotated 
with their respective labels. The dataset contains 
around 4,000 images of 282 different minerals, 
each with labels. The dimensions of these images 

stand at 110 ⨉ 110 pixels. The labeling schema is 
comprehensive, encapsulating various attributes 
such as the mineral name, associated crystal 
system, chemical groupings, rock typologies, 
and fracture characteristics. For the purpose of 
model training and evaluation, the dataset was 
stratified into training and test sets, adhering to 
an 80% to 20% split ratio.

Figure 3. Samples of mineral specimens in the mineral dataset. Each mineral is shown in their name and formula.
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Given the inherent challenges posed 
by a limited number of images per mineral 
specimen (averaging about 14 images for each 
mineral type) and the relatively diminutive 
image dimensions, we employed a series of data 
augmentation strategies. Techniques such as 
Random Resized Crop and Random Horizontal 
Flip were judiciously applied to the training 
dataset to diversify and enhance its content.

3.2. Model training

Within the mineral classification framework, 
we incorporated three variants of the Swin 
Transformer V2 model, differentiated by 
their size: the Tiny-sized model (SwinV2-T), 
the Small-sized model (SwinV2-S), and the 
Base-sized model (SwinV2-B). Each of these 
models has undergone preliminary training 
on the ImageNet-1k dataset at a resolution of  
256 ⨉ 256 pixels.48 Recognizing the intricacies 
of a multiclass classification task, we elected the 
cross-entropy (CE) as our loss function, with the 
top-1 accuracy metric serving as the cornerstone 
of our evaluation process.

The training set, derived from our curated 
dataset, was harnessed to fine-tune these 
models. An advanced image preprocessing tool, 
the Vision Transformer (ViT), was deployed 
to ensure uniform normalization of images, 
thus harmonizing their resolution to align 
with the models' specifications. All associated 
hyperparameters pertinent to the fine-tuning 
process are systematically delineated in Table 1.

Table 1. The defined hyperparameters for finetuning 
the Swin Transformer V2 models.

Hyperparameter Value
learning_rate 5e-5
warmup_ratio 0.1
gradient_accumulation_steps 4
batch_size 32

Subsequent to the fine-tuning phase, a 
rigorous evaluation was conducted to assess the 
performance of each model variant, employing 
the test set as the benchmark.

3.3. XAI integration

In this section, we leverage XAI to enhance 
the interpretability and transparency of Swin 
Transformer V2 models. We utilize GradCAM 
as the XAI method.41 Given an input image, the 
forward pass computes activations at the chosen 
layer. The gradients of the class score concerning 
this layer's activations are then computed. These 
gradients are globally average-pooled to produce 
weights. Finally, a weighted combination of 
forward activation maps produces the GradCAM 
heatmap. 

where:

l LGradCAM is the explanation map for class c.

l          are the global-average-pooled gradients.

l Ak represents the forward activation maps 
for the chosen layer.

l ReLU ensures that only positive influences 
on the class prediction are visualized.

3.4. Information retrieval with GPT-4

Given the multitude of mineral specimens that 
can be identified and categorized by our models, 
we recognized the imperative to supplement the 
raw classification with pertinent information. 
To this end, we employ the capabilities of GPT-
4. This strategic integration is underpinned by 
the objective of furnishing end-users-who may 
lack prior familiarity with the specific mineral 
depicted in the image-with comprehensive and 
contextually relevant insights.

Upon obtaining the results from our 
primary classification model, we extract the 
top-most prediction, which is then utilized as an 
input for GPT-4. This methodology enables the 
provision of comprehensive and contextual data 
to the end-user. Notably, we have configured 
GPT-4 to emulate the expertise of a mineralogist, 
thereby ensuring that the generated information 
is not only informative but is also presented 
in a manner that is both engaging and cogent. 
It is worth emphasizing that vague or generic 
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explanations are deliberately avoided, thereby 
enhancing the utility and reliability of the 
provided details.

To further bolster the authenticity and 
veracity of the information retrieved, we have 
imparted explicit instructions to GPT-4, directing 
it to rely solely on information from reputable 
sources. Among the preferred repositories are 
Wikipedia, an encyclopedia recognized for its 
vast and up-to-date content; The Mineral and 
Gemstone Kingdom, known for its exhaustive 
listings and detailed mineralogical insights; and 
the Mineral Resources Database, a repository 
hailed for its accuracy and comprehensive 
coverage. By anchoring our information retrieval 
process in such esteemed sources, we aspire 
to ensure that the knowledge disseminated to 
the users is both trustworthy and of the highest 
academic caliber.

4. RESULTS

In this section, we systematically present the 
empirical results and observations gleaned from 
the evaluations of the Swin Transformer V2 
models. Initially, we will provide a quantitative 
assessment of the models based on the test 
set, followed by an exploration of the visual 
explanations in the form of saliency maps.

4.1. Quantitative assessment of model 
performances

We subject three distinct models - SwinV2-T, 
SwinV2-S, and SwinV2-B - to rigorous 
evaluation, both on training and test sets. 
As depicted in Figure 4, all three models 
demonstrate comparable CE loss on the training 
set. Notably, SwinV2-B emerges as the earliest 
to converge, trailed by SwinV2-S and SwinV2-T. 
Furthermore, SwinV2-B boasts the lowest CE 
loss among the trio. 

However, a contrasting pattern emerges 
upon examining their performance on the test 
set, as shown in Figure 5. SwinV2-S achieves the 
lowest CE loss. Nevertheless, all three models 
showcase an analogous behavior; their CE 
losses manifest a steady uptick after the initial 
1,000 training steps. This tendency suggests 
a pronounced overfitting to the training data 

and limited generalization to unseen datasets. 
This observation is further corroborated by 
accuracy metrics on the test set, with the most 
compact model, SwinV2-T, outperforming its 
counterparts.

In contemporary AI research, the 
efficiency of models, especially concerning 
GPU power consumption measured in Watts 
(W), has emerged as a crucial criterion. 
Lower power usage signifies a reduced carbon 
footprint, advancing the cause of sustainable 
and eco-friendly AI modeling. As one would 
anticipate, SwinV2-T, with its parsimonious 
parameterization, consumes the least power, 
trailed by SwinV2-S and then SwinV2-B, as 
evident from Figure 6.

Given the above empirical observations, 
factoring in both performance and efficiency, 
we advocate SwinV2-T as the primary model 
recommendation within our framework. 
However, we offer users the flexibility to 
leverage other models as per their requirements.

Figure 4. The (a) loss and (b) average loss of three 
classification models, namely SwinV2-T (pink), 
SwinV2-S (yellow), and SwinV2-B (blue), on the 
training set during the training phase.
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4.2. In-depth qualitative analysis of classification 
explanations

This section provides a meticulous qualitative 
dissection of the explanations underlying the 
classification decisions made by our selected 
model.

Figure 7 demarcates two distinct 
classification cases associated with the SwinV2-T 
model: an instance of accurate classification and 
a contrasting case of misclassification.

In scenarios where the classification 
proves accurate, the model's top-1 prediction 
perfectly resonates with the ground truth, 
illustrated by the case of the mineral Boleite. A 
closer examination reveals that the model, in its 
discernment, emphasizes specific features of the 
mineral. Specifically, it pays particular attention 
to the frontal facade of the mineral, which 
seems to be a key determinant in its accurate 
classification.

Figure 5. The (a) loss and (b) accuracy of three 
models, namely SwinV2-T (pink), SwinV2-S 
(yellow), and SwinV2-B (blue) on the test set during 
the training phase.

Figure 6. The process GPU power usage (in Watt) 
of three models, namely SwinV2-T (pink), SwinV2-S 
(yellow), and SwinV2-B (blue) during the training phase.

However, in instances where the 
classification goes awry, the model's decision-
making intricacies become all the more fascinating. 
Taking the case where the model erroneously 
identifies an image as Monazite, with the second-
highest probability assigned to Xenotime, the 
GradCAM explanation offers invaluable insights. 
The model seems to be unduly influenced by the 
image's background and specific sections of the 
Xenotime that are color-matched with training 
samples of Monazite. Such idiosyncrasies in 
model behavior, illuminated by XAI techniques, 
accentuate the need for interpretability. It ensures 
that even when the model falters, its decision-
making rationale remains transparent, allowing 
users to comprehend and, potentially, correct or 
circumvent such pitfalls.

Figure 7. Examples of XAI-driven explanations 
for (a) an accurate classification and (b) an instance 
of misclassification as determined by SwinV2-T. 
Notably, the latter also integrates a training exemplar 
of the misclassified mineral, offering users an added 
layer of context.
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4.3. Comprehensive insights through information 
retrieval

Table 2. Information retrieval with GPT-4 on 
classified minerals. As being instructed to deliver 
only facts from credible sources, the GPT-4 can 
deliver human-like information to end-users.

Mineral: Monazite

GPT-4: Monazite is a rare-earth phosphate mineral 
with the chemical formula (Ce,La,Nd,Th)PO4. It is 
typically reddish-brown in color and has a resinous 
to vitreous luster. Monazite is an important source 
of rare-earth elements, which are used in various 
high-tech applications including electronics, 
magnets, and catalysts. It is also known for its 
radioactive properties, containing thorium and 
uranium. Due to its scarcity and economic value, 
monazite is often mined for its rare-earth content.

Mineral: Acanthite

GPT-4: Acanthite is a silver sulfide mineral with 
the chemical formula Ag2S. It is an important ore 
of silver and is commonly found in hydrothermal 
veins and low-temperature deposits. Acanthite 
is known for its metallic luster and dark gray to 
black color. It has a high density and is relatively 
soft. Acanthite is often associated with other silver 
minerals such as native silver and argentite. It is 
widely used in the production of silver metal and 
jewelry.

Building upon the top-1 classification of 
our mineral classification framework, GPT-4 
acts as a sophisticated intermediary, extracting 
and presenting informative details about the 
identified minerals, such as Monazite and 
Acanthite, as shown in Table 2. Leveraging its 
vast training data, which encapsulates extensive 
knowledge on diverse mineral specimens, GPT-4  
ensures that the information procured is not just 
accurate but is also curated to cater to users with 
varied levels of prior knowledge.

Furthermore, by incorporating safety 
protocols that ensure information retrieval solely 
from reputable sources, such as Wikipedia, 
The Mineral and Gemstone Kingdom, and the 
Mineral Resources Database, we guarantee the 

veracity and reliability of the procured data. 
Thus, users not only receive a rich tapestry of 
mineralogical information but also the assurance 
of its credibility. In essence, the synergy between 
our classification framework and GPT-4 creates 
an enriched user experience, fostering a more 
profound understanding and appreciation of the 
minerals.

5. CONCLUSION AND FUTURE WORK

Throughout this work, we have presented an 
AI-driven mineral classification framework 
characterized by its high interpretability and 
informative capabilities. This framework, 
bolstered by advanced XAI techniques and 
LLM, is strategically designed to cater to a wide 
audience, including those with limited or no prior 
expertise in mineralogy or AI. The incorporation 
of XAI proves invaluable, particularly in instances 
of incorrect model decisions, facilitating a more 
transparent and comprehensible insight into the 
model's reasoning. Such transparency is crucial 
in bolstering user trust and understanding, 
enabling them to more confidently engage 
with the system. Our future works revolve 
around broadening the scope of our dataset by 
integrating data from diverse and robust sources. 
This not only promises to enhance the model's 
precision but also its efficiency. Additionally, 
we aim to delve deeper into the human-centric 
aspect of our system. Specifically, we intend to 
orchestrate comprehensive human evaluations 
that will scrutinize both the plausibility and the 
faithfulness of explanations and information 
generated by XAI techniques and LLMs. Such 
evaluations will serve as a litmus test, assessing 
the real-world applicability and impact of our 
framework on its intended users.
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